Moving Object Detection and Tracking Using Binocular Vision Based on Spatial Constraints of Static Environment

碩士 === 淡江大學 === 機械與機電工程學系碩士班 === 99 === This thesis presents a visual simultaneous localization, mapping and moving object tracking (SLAMMOT) based on extended Kalman filter (EKF). First, we use the geometric constraints of static landmarks in three-dimensional space to design the algorithms of data...

Full description

Bibliographic Details
Main Authors: Syuan -Kai Hung, 洪璿凱
Other Authors: Yin-Tien Wang
Format: Others
Language:zh-TW
Published: 2011
Online Access:http://ndltd.ncl.edu.tw/handle/60285200837621829570
id ndltd-TW-099TKU05489039
record_format oai_dc
spelling ndltd-TW-099TKU054890392016-04-11T04:22:38Z http://ndltd.ncl.edu.tw/handle/60285200837621829570 Moving Object Detection and Tracking Using Binocular Vision Based on Spatial Constraints of Static Environment 基於靜態環境的空間限制條件之雙眼視覺式移動物體偵測與追蹤 Syuan -Kai Hung 洪璿凱 碩士 淡江大學 機械與機電工程學系碩士班 99 This thesis presents a visual simultaneous localization, mapping and moving object tracking (SLAMMOT) based on extended Kalman filter (EKF). First, we use the geometric constraints of static landmarks in three-dimensional space to design the algorithms of data association and map management. Since these algorithms are independent of the EKF estimator, the SLAMMOT system can recover from the problem of robot kidnapped automatically. Second, we use the same geometric constraints to develop the algorithm for moving object detection. The developed algorithms are integrated with the EKF estimator to carry out the experiments of SLAMMOT tasks in indoor environments. Yin-Tien Wang 王銀添 2011 學位論文 ; thesis 71 zh-TW
collection NDLTD
language zh-TW
format Others
sources NDLTD
description 碩士 === 淡江大學 === 機械與機電工程學系碩士班 === 99 === This thesis presents a visual simultaneous localization, mapping and moving object tracking (SLAMMOT) based on extended Kalman filter (EKF). First, we use the geometric constraints of static landmarks in three-dimensional space to design the algorithms of data association and map management. Since these algorithms are independent of the EKF estimator, the SLAMMOT system can recover from the problem of robot kidnapped automatically. Second, we use the same geometric constraints to develop the algorithm for moving object detection. The developed algorithms are integrated with the EKF estimator to carry out the experiments of SLAMMOT tasks in indoor environments.
author2 Yin-Tien Wang
author_facet Yin-Tien Wang
Syuan -Kai Hung
洪璿凱
author Syuan -Kai Hung
洪璿凱
spellingShingle Syuan -Kai Hung
洪璿凱
Moving Object Detection and Tracking Using Binocular Vision Based on Spatial Constraints of Static Environment
author_sort Syuan -Kai Hung
title Moving Object Detection and Tracking Using Binocular Vision Based on Spatial Constraints of Static Environment
title_short Moving Object Detection and Tracking Using Binocular Vision Based on Spatial Constraints of Static Environment
title_full Moving Object Detection and Tracking Using Binocular Vision Based on Spatial Constraints of Static Environment
title_fullStr Moving Object Detection and Tracking Using Binocular Vision Based on Spatial Constraints of Static Environment
title_full_unstemmed Moving Object Detection and Tracking Using Binocular Vision Based on Spatial Constraints of Static Environment
title_sort moving object detection and tracking using binocular vision based on spatial constraints of static environment
publishDate 2011
url http://ndltd.ncl.edu.tw/handle/60285200837621829570
work_keys_str_mv AT syuankaihung movingobjectdetectionandtrackingusingbinocularvisionbasedonspatialconstraintsofstaticenvironment
AT hóngxuánkǎi movingobjectdetectionandtrackingusingbinocularvisionbasedonspatialconstraintsofstaticenvironment
AT syuankaihung jīyújìngtàihuánjìngdekōngjiānxiànzhìtiáojiànzhīshuāngyǎnshìjuéshìyídòngwùtǐzhēncèyǔzhuīzōng
AT hóngxuánkǎi jīyújìngtàihuánjìngdekōngjiānxiànzhìtiáojiànzhīshuāngyǎnshìjuéshìyídòngwùtǐzhēncèyǔzhuīzōng
_version_ 1718220924060172288