Automatic Feature Extraction for Human Activity Recognitionon the Edge

This thesis evaluates two methods for automatic feature extraction to classify the accelerometer data of periodic and sporadic human activities. The first method selects features using individual hypothesis tests and the second one is using a random forest classifier as an embedded feature selector....

Full description

Bibliographic Details
Main Authors: Cleve, Oscar, Gustafsson, Sara
Format: Others
Language:English
Published: KTH, Skolan för elektroteknik och datavetenskap (EECS) 2019
Subjects:
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-260247