Automatic Feature Extraction for Human Activity Recognitionon the Edge
This thesis evaluates two methods for automatic feature extraction to classify the accelerometer data of periodic and sporadic human activities. The first method selects features using individual hypothesis tests and the second one is using a random forest classifier as an embedded feature selector....
Main Authors: | , |
---|---|
Format: | Others |
Language: | English |
Published: |
KTH, Skolan för elektroteknik och datavetenskap (EECS)
2019
|
Subjects: | |
Online Access: | http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-260247 |