Epigenetic Regulation of Gene Transcription in Hematopoietic Tumors

Epigenetic modifications were shown to play an essential role in tumorigenesis. Epigenetic mechanisms can alter transcription in several ways, through DNA methylation and/or through histone modification. DNA methylation at the TSS (transcriptional start site) has been implicated in tumor development...

Full description

Bibliographic Details
Main Author: Tshuikina Wiklander, Marina
Format: Doctoral Thesis
Language:English
Published: Uppsala universitet, Institutionen för genetik och patologi 2008
Subjects:
Online Access:http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-9206
http://nbn-resolving.de/urn:isbn:978-91-554-7257-3
id ndltd-UPSALLA1-oai-DiVA.org-uu-9206
record_format oai_dc
spelling ndltd-UPSALLA1-oai-DiVA.org-uu-92062013-01-08T13:04:50ZEpigenetic Regulation of Gene Transcription in Hematopoietic TumorsengTshuikina Wiklander, MarinaUppsala universitet, Institutionen för genetik och patologiUppsala : Acta Universitatis Upsaliensis2008Medical sciencesIRF familyICSBP/IRF8epigeneticsATRATNFαhistone modificationsmethylationtranscriptionMEDICIN OCH VÅRDEpigenetic modifications were shown to play an essential role in tumorigenesis. Epigenetic mechanisms can alter transcription in several ways, through DNA methylation and/or through histone modification. DNA methylation at the TSS (transcriptional start site) has been implicated in tumor development and gene silencing. However, several examples of atypical methylation were shown. In Paper I we present the ICSBP/IRF8 gene that belongs to the IRF family and has characteristics of a tumor suppressor gene. The ICSBP/IRF8 is fully methylated in the promoter and TSS regions in U-937 and despite high expression of the gene. Presence of positive histone marks suggests that methylated DNA can be overridden by histone modification. In Paper II a panel of 13 MM (multiple myeloma) cell lines and 9 primary patient tumors were analysed for methylation status of the ICSBP/IRF8 gene. In most cell lines (8/13) the gene was partially or fully methylated and partial methylation was also observed in 1/9 primary tumors. In vitro methylation analysis and treatment with 5-aza-2’deoxycytidine (DAC) proved that the ICSBP/IRF8 gene is silenced by methylation and may be associated with the malignant phenotype. In Paper III and IV the NFκB signalling pathway was analysed and the role of ATRA and TNFα induction. In Paper III the data shows that activation of the NFκB pathway is essential in ATRA-induced terminal differentiation in the U-937 cell line and IκBα (S32A/S36A) inhibits ATRA-induced differentiation and G1 cell cycle arrest. This was accompanied by delayed down-regulation of several cyclins (A and E) and up-regulation of p21WAF1/CIP1 (CDKN1A) and p27KIP1 (CDKN1B). TNFα alone did not induce expression of RA-induced genes analysed in Paper IV. However, ATRA in combination with TNFα showed enhanced activation of RA-induced genes. TNFα triggers demethylation of H3K9me3/H3K9me2 and H3K4me3 at RAR/RXR target genes, which were not accompanied by changes in the level of H3K9-ac. This decrease in H3 methylation by TNFα may pave way for the later ATRA-induced gene transcription. Doctoral thesis, comprehensive summaryinfo:eu-repo/semantics/doctoralThesistexthttp://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-9206urn:isbn:978-91-554-7257-3Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine, 1651-6206 ; 368application/pdfinfo:eu-repo/semantics/openAccess
collection NDLTD
language English
format Doctoral Thesis
sources NDLTD
topic Medical sciences
IRF family
ICSBP/IRF8
epigenetics
ATRA
TNFα
histone modifications
methylation
transcription
MEDICIN OCH VÅRD
spellingShingle Medical sciences
IRF family
ICSBP/IRF8
epigenetics
ATRA
TNFα
histone modifications
methylation
transcription
MEDICIN OCH VÅRD
Tshuikina Wiklander, Marina
Epigenetic Regulation of Gene Transcription in Hematopoietic Tumors
description Epigenetic modifications were shown to play an essential role in tumorigenesis. Epigenetic mechanisms can alter transcription in several ways, through DNA methylation and/or through histone modification. DNA methylation at the TSS (transcriptional start site) has been implicated in tumor development and gene silencing. However, several examples of atypical methylation were shown. In Paper I we present the ICSBP/IRF8 gene that belongs to the IRF family and has characteristics of a tumor suppressor gene. The ICSBP/IRF8 is fully methylated in the promoter and TSS regions in U-937 and despite high expression of the gene. Presence of positive histone marks suggests that methylated DNA can be overridden by histone modification. In Paper II a panel of 13 MM (multiple myeloma) cell lines and 9 primary patient tumors were analysed for methylation status of the ICSBP/IRF8 gene. In most cell lines (8/13) the gene was partially or fully methylated and partial methylation was also observed in 1/9 primary tumors. In vitro methylation analysis and treatment with 5-aza-2’deoxycytidine (DAC) proved that the ICSBP/IRF8 gene is silenced by methylation and may be associated with the malignant phenotype. In Paper III and IV the NFκB signalling pathway was analysed and the role of ATRA and TNFα induction. In Paper III the data shows that activation of the NFκB pathway is essential in ATRA-induced terminal differentiation in the U-937 cell line and IκBα (S32A/S36A) inhibits ATRA-induced differentiation and G1 cell cycle arrest. This was accompanied by delayed down-regulation of several cyclins (A and E) and up-regulation of p21WAF1/CIP1 (CDKN1A) and p27KIP1 (CDKN1B). TNFα alone did not induce expression of RA-induced genes analysed in Paper IV. However, ATRA in combination with TNFα showed enhanced activation of RA-induced genes. TNFα triggers demethylation of H3K9me3/H3K9me2 and H3K4me3 at RAR/RXR target genes, which were not accompanied by changes in the level of H3K9-ac. This decrease in H3 methylation by TNFα may pave way for the later ATRA-induced gene transcription.
author Tshuikina Wiklander, Marina
author_facet Tshuikina Wiklander, Marina
author_sort Tshuikina Wiklander, Marina
title Epigenetic Regulation of Gene Transcription in Hematopoietic Tumors
title_short Epigenetic Regulation of Gene Transcription in Hematopoietic Tumors
title_full Epigenetic Regulation of Gene Transcription in Hematopoietic Tumors
title_fullStr Epigenetic Regulation of Gene Transcription in Hematopoietic Tumors
title_full_unstemmed Epigenetic Regulation of Gene Transcription in Hematopoietic Tumors
title_sort epigenetic regulation of gene transcription in hematopoietic tumors
publisher Uppsala universitet, Institutionen för genetik och patologi
publishDate 2008
url http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-9206
http://nbn-resolving.de/urn:isbn:978-91-554-7257-3
work_keys_str_mv AT tshuikinawiklandermarina epigeneticregulationofgenetranscriptioninhematopoietictumors
_version_ 1716508237968179200