On the Development of a Real-Time Embedded Digital Controller for Heavy Truck Semiactive Suspensions

A digital controller was designed for a semiactive primary suspension for a class 8 highway truck. The controller used a skyhook policy (where the semiactive damper simulates a damper between the sprung mass and an inertial reference) to control magneto-rheological dampers placed on the truck '...

Full description

Bibliographic Details
Main Author: McLellan, Neil Scott
Other Authors: Electrical Engineering
Format: Others
Published: Virginia Tech 2014
Subjects:
Online Access:http://hdl.handle.net/10919/36852
http://scholar.lib.vt.edu/theses/available/etd-61998-21473/
Description
Summary:A digital controller was designed for a semiactive primary suspension for a class 8 highway truck. The controller used a skyhook policy (where the semiactive damper simulates a damper between the sprung mass and an inertial reference) to control magneto-rheological dampers placed on the truck 's primary suspension in response to measurements made by accelerometers placed on the axle and the truck frame. The completed system was then tested for both random noise (on highway driving) and impulse (speed bump) response. The test results showed that for the damping tuning and controller arrangements used in this study, semiactive dampers do not offer any significant benefits in reducing overall vibration levels at the truck frame or axles. The semiactive dampers, however, provided better control of the dynamic transients, such as roll and pitch induced by hitting speed bumps, as compared to passive dampers. Further assessment of the magneto-rheological damper's tuning and the skyhook control policy is needed to establish any definitive conclusions on the potential benefits of semiactive magneto-rheological suspensions for heavy trucks. === Master of Science