Reinforcement Learning with Gaussian Processes for Unmanned Aerial Vehicle Navigation
We study the problem of Reinforcement Learning (RL) for Unmanned Aerial Vehicle (UAV) navigation with the smallest number of real world samples possible. This work is motivated by applications of learning autonomous navigation for aerial robots in structural inspec- tion. A naive RL implementation s...
Main Author: | |
---|---|
Other Authors: | |
Format: | Others |
Published: |
Virginia Tech
2017
|
Subjects: | |
Online Access: | http://hdl.handle.net/10919/78667 |