Modified Kernel Principal Component Analysis and Autoencoder Approaches to Unsupervised Anomaly Detection
Unsupervised anomaly detection is the task of identifying examples that differ from the normal or expected pattern without the use of labeled training data. Our research addresses shortcomings in two existing anomaly detection algorithms, Kernel Principal Component Analysis (KPCA) and Autoencoders (...
Main Author: | |
---|---|
Other Authors: | |
Format: | Others |
Published: |
Virginia Tech
2020
|
Subjects: | |
Online Access: | http://hdl.handle.net/10919/98659 |