Therapeutic Drugs in Cancer
The first study examined the interaction between low doses of the multi-kinase inhibitor sorafenib and the histone deacetylase inhibitor vorinostat in colon cancer cells. Sorafenib and vorinostat synergized to kill HCT116 and SW480 cells. In SW480 cells, sorafenib+vorinostat toxicity correlated with...
Main Author: | |
---|---|
Format: | Others |
Published: |
VCU Scholars Compass
2009
|
Subjects: | |
Online Access: | http://scholarscompass.vcu.edu/etd/1722 http://scholarscompass.vcu.edu/cgi/viewcontent.cgi?article=2721&context=etd |
id |
ndltd-vcu.edu-oai-scholarscompass.vcu.edu-etd-2721 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-vcu.edu-oai-scholarscompass.vcu.edu-etd-27212017-03-17T08:30:18Z Therapeutic Drugs in Cancer Walker, Teneille The first study examined the interaction between low doses of the multi-kinase inhibitor sorafenib and the histone deacetylase inhibitor vorinostat in colon cancer cells. Sorafenib and vorinostat synergized to kill HCT116 and SW480 cells. In SW480 cells, sorafenib+vorinostat toxicity correlated with CD95 activation and CD95-stimulated autophagy. Drug lethality in SW480 cells was blocked by knock down of CD95. In SW620 cells that are patient matched to SW480 cells, sorafenib+vorinostat toxicity was significantly reduced that correlated with a lack of CD95 activation and lower expression of ceramide synthase 6 (LASS6). Overexpression of LASS6 in SW620 cells enhanced drug-induced CD95 activation and tumor cell killing, whereas knock down of LASS6 in SW480 cells suppressed CD95 activation. In HCT116 cells, sorafenib+vorinostat did not increase CD95 plasma membrane levels, weakly induced caspase 8 association with CD95, and knock down of CD95 enhanced drug lethality. In HCT116 cells sorafenib+vorinostat treatment caused CD95-dependent autophagy that was a protective signal. Thus, treatment of tumor cells with sorafenib+vorinostat activates CD95 that promotes viability via autophagy or degrades survival via extrinsic or intrinsic pathways. Drug-induced activation of the de novo ceramide synthesis pathway plays a key role in CD95 activation. The second project explores the mechanism by which the combination of 17AAG, an hsp90 inhibitor, and PD184352, a MEK1/2 inhibitor alters survival in colon cancer cells. 17AAG and PD184352 synergized to kill HCT116 and SW480 cells. In HCT116 cells drug-exposure increased CD95 plasma membrane levels In SW620 cells, 17AAG and PD184352 toxicity was significantly reduced that correlated with a lack of CD95 activation and lower expression LASS6. Overexpression of LASS6 in SW620 cells enhanced drug-induced CD95 activation and tumor cell killing. In Mia Paca2 cells, a pancreatic cell line, inhibition of caspase 8 or overexpression of c-FLIP-s suppressed cell killing by PD184352 and 17AAG exposure. Drug lethality in Mia Paca2 cells was blocked by knock down of CD95. Additionally, overexpression of Bcl-xL or knockdown of caspase 9 decreased cell killing in 17AAG and PD184352 combination treatment. Thus, 17AAG+PD184352 exposure activates the extrinsic and intrinsic apoptotic pathways to kill Mia Paca2 cells. This document was created in Microsoft Word 2000. 2009-04-16T07:00:00Z text application/pdf http://scholarscompass.vcu.edu/etd/1722 http://scholarscompass.vcu.edu/cgi/viewcontent.cgi?article=2721&context=etd © The Author Theses and Dissertations VCU Scholars Compass Sorafenib Vorinostat Medical Pharmacology Medical Sciences Medicine and Health Sciences |
collection |
NDLTD |
format |
Others
|
sources |
NDLTD |
topic |
Sorafenib Vorinostat Medical Pharmacology Medical Sciences Medicine and Health Sciences |
spellingShingle |
Sorafenib Vorinostat Medical Pharmacology Medical Sciences Medicine and Health Sciences Walker, Teneille Therapeutic Drugs in Cancer |
description |
The first study examined the interaction between low doses of the multi-kinase inhibitor sorafenib and the histone deacetylase inhibitor vorinostat in colon cancer cells. Sorafenib and vorinostat synergized to kill HCT116 and SW480 cells. In SW480 cells, sorafenib+vorinostat toxicity correlated with CD95 activation and CD95-stimulated autophagy. Drug lethality in SW480 cells was blocked by knock down of CD95. In SW620 cells that are patient matched to SW480 cells, sorafenib+vorinostat toxicity was significantly reduced that correlated with a lack of CD95 activation and lower expression of ceramide synthase 6 (LASS6). Overexpression of LASS6 in SW620 cells enhanced drug-induced CD95 activation and tumor cell killing, whereas knock down of LASS6 in SW480 cells suppressed CD95 activation. In HCT116 cells, sorafenib+vorinostat did not increase CD95 plasma membrane levels, weakly induced caspase 8 association with CD95, and knock down of CD95 enhanced drug lethality. In HCT116 cells sorafenib+vorinostat treatment caused CD95-dependent autophagy that was a protective signal. Thus, treatment of tumor cells with sorafenib+vorinostat activates CD95 that promotes viability via autophagy or degrades survival via extrinsic or intrinsic pathways. Drug-induced activation of the de novo ceramide synthesis pathway plays a key role in CD95 activation. The second project explores the mechanism by which the combination of 17AAG, an hsp90 inhibitor, and PD184352, a MEK1/2 inhibitor alters survival in colon cancer cells. 17AAG and PD184352 synergized to kill HCT116 and SW480 cells. In HCT116 cells drug-exposure increased CD95 plasma membrane levels In SW620 cells, 17AAG and PD184352 toxicity was significantly reduced that correlated with a lack of CD95 activation and lower expression LASS6. Overexpression of LASS6 in SW620 cells enhanced drug-induced CD95 activation and tumor cell killing. In Mia Paca2 cells, a pancreatic cell line, inhibition of caspase 8 or overexpression of c-FLIP-s suppressed cell killing by PD184352 and 17AAG exposure. Drug lethality in Mia Paca2 cells was blocked by knock down of CD95. Additionally, overexpression of Bcl-xL or knockdown of caspase 9 decreased cell killing in 17AAG and PD184352 combination treatment. Thus, 17AAG+PD184352 exposure activates the extrinsic and intrinsic apoptotic pathways to kill Mia Paca2 cells. This document was created in Microsoft Word 2000. |
author |
Walker, Teneille |
author_facet |
Walker, Teneille |
author_sort |
Walker, Teneille |
title |
Therapeutic Drugs in Cancer |
title_short |
Therapeutic Drugs in Cancer |
title_full |
Therapeutic Drugs in Cancer |
title_fullStr |
Therapeutic Drugs in Cancer |
title_full_unstemmed |
Therapeutic Drugs in Cancer |
title_sort |
therapeutic drugs in cancer |
publisher |
VCU Scholars Compass |
publishDate |
2009 |
url |
http://scholarscompass.vcu.edu/etd/1722 http://scholarscompass.vcu.edu/cgi/viewcontent.cgi?article=2721&context=etd |
work_keys_str_mv |
AT walkerteneille therapeuticdrugsincancer |
_version_ |
1718428387633004544 |