Quantifying Cell-Derived Changes in Collagen Synthesis, Alignment, and Mechanics in a 3D Connective Tissue Model

Dysregulation of extracellular matrix (ECM) synthesis, organization, and mechanics are hallmark features of diseases like fibrosis and cancer. However, most in vitro models fail to recapitulate the three-dimensional (3D) multi-scale hierarchical architecture of collagen-rich tissues and as a result,...

Full description

Bibliographic Details
Main Authors: Evans, E.B (Author), Hopkins, C.M (Author), Howes, A. (Author), Morgan, J.R (Author), Nakhla, M.N (Author), Wilks, B.T (Author), Williams, G. (Author)
Format: Article
Language:English
Published: John Wiley and Sons Inc 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 03209nam a2200565Ia 4500
001 10-1002-advs-202103939
008 220420s2022 CNT 000 0 und d
020 |a 21983844 (ISSN) 
245 1 0 |a Quantifying Cell-Derived Changes in Collagen Synthesis, Alignment, and Mechanics in a 3D Connective Tissue Model 
260 0 |b John Wiley and Sons Inc  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1002/advs.202103939 
520 3 |a Dysregulation of extracellular matrix (ECM) synthesis, organization, and mechanics are hallmark features of diseases like fibrosis and cancer. However, most in vitro models fail to recapitulate the three-dimensional (3D) multi-scale hierarchical architecture of collagen-rich tissues and as a result, are unable to mirror native or disease phenotypes. Herein, using primary human fibroblasts seeded into custom fabricated 3D non-adhesive agarose molds, a novel strategy is proposed to direct the morphogenesis of engineered 3D ring-shaped tissue constructs with tensile and histological properties that recapitulate key features of fibrous connective tissue. To characterize the shift from monodispersed cells to a highly-aligned, collagen-rich matrix, a multi-modal approach integrating histology, multiphoton second-harmonic generation, and electron microscopy is employed. Structural changes in collagen synthesis and alignment are then mapped to functional differences in tissue mechanics and total collagen content. Due to the absence of an exogenously added scaffolding material, this model enables the direct quantification of cell-derived changes in 3D matrix synthesis, alignment, and mechanics in response to the addition or removal of relevant biomolecular perturbations. To illustrate this, the effects of nutrient composition, fetal bovine serum, rho-kinase inhibitor, and pro- and anti-fibrotic compounds on ECM synthesis, 3D collagen architecture, and mechanophenotype are quantified. © 2022 The Authors. Advanced Science published by Wiley-VCH GmbH. 
650 0 4 |a 3D tissue engineering 
650 0 4 |a Adhesives 
650 0 4 |a Advanced science 
650 0 4 |a Alignment 
650 0 4 |a Cell culture 
650 0 4 |a collagen 
650 0 4 |a Collagen 
650 0 4 |a Collagen synthesis 
650 0 4 |a connective tissue 
650 0 4 |a Connective tissues 
650 0 4 |a Disease phenotypes 
650 0 4 |a extracellular matrix 
650 0 4 |a Extracellular matrix synthesis 
650 0 4 |a fibroblast 
650 0 4 |a fibrosis 
650 0 4 |a Hierarchical architectures 
650 0 4 |a Histology 
650 0 4 |a Human fibroblast 
650 0 4 |a In-vitro models 
650 0 4 |a Mammals 
650 0 4 |a mechanics 
650 0 4 |a Mechanics 
650 0 4 |a mechanophenotype 
650 0 4 |a Multi-scales 
650 0 4 |a Musculoskeletal system 
650 0 4 |a Nonlinear optics 
650 0 4 |a Scaffolds (biology) 
650 0 4 |a TGF-β1 
650 0 4 |a Tissue 
650 0 4 |a Tissue models 
700 1 0 |a Evans, E.B.  |e author 
700 1 0 |a Hopkins, C.M.  |e author 
700 1 0 |a Howes, A.  |e author 
700 1 0 |a Morgan, J.R.  |e author 
700 1 0 |a Nakhla, M.N.  |e author 
700 1 0 |a Wilks, B.T.  |e author 
700 1 0 |a Williams, G.  |e author 
773 |t Advanced Science