Hydrogen Sulphide Release via the Angiotensin Converting Enzyme Inhibitor Zofenopril Prevents Intimal Hyperplasia in Human Vein Segments and in a Mouse Model of Carotid Artery Stenosis

Objective: Hypertension is a major risk factor for intimal hyperplasia (IH) and re-stenosis following vascular and endovascular interventions. Preclinical studies suggest that hydrogen sulphide (H2S), an endogenous gasotransmitter, limits re-stenosis. While there is no clinically available pure H2S...

Full description

Bibliographic Details
Main Authors: Allagnat, F. (Author), Corpataux, J.-M (Author), Déglise, S. (Author), Deslarzes-Dubuis, C. (Author), Lambelet, M. (Author), Longchamp, A. (Author), Macabrey, D. (Author), Ozaki, C.K (Author)
Format: Article
Language:English
Published: W.B. Saunders Ltd 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 04763nam a2200841Ia 4500
001 10-1016-j-ejvs-2021-09-032
008 220420s2022 CNT 000 0 und d
020 |a 10785884 (ISSN) 
245 1 0 |a Hydrogen Sulphide Release via the Angiotensin Converting Enzyme Inhibitor Zofenopril Prevents Intimal Hyperplasia in Human Vein Segments and in a Mouse Model of Carotid Artery Stenosis 
260 0 |b W.B. Saunders Ltd  |c 2022 
300 |a 11 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1016/j.ejvs.2021.09.032 
520 3 |a Objective: Hypertension is a major risk factor for intimal hyperplasia (IH) and re-stenosis following vascular and endovascular interventions. Preclinical studies suggest that hydrogen sulphide (H2S), an endogenous gasotransmitter, limits re-stenosis. While there is no clinically available pure H2S releasing compound, the sulfhydryl containing angiotensin converting enzyme inhibitor zofenopril is a source of H2S. Here, it was hypothesised that zofenopril, due to H2S release, would be superior to other non-sulfhydryl containing angiotensin converting enzyme inhibitors (ACEi) in reducing intimal hyperplasia. Methods: Spontaneously hypertensive male Cx40 deleted mice (Cx40–/–) or wild type (WT) littermates were randomly treated with enalapril 20 mg or zofenopril 30 mg. Discarded human vein segments and primary human smooth muscle cells (SMCs) were treated with the active compound enalaprilat or zofenoprilat. IH was evaluated in mice 28 days after focal carotid artery stenosis surgery and in human vein segments cultured for seven days ex vivo. Human primary smooth muscle cell (SMC) proliferation and migration were studied in vitro. Results: Compared with control animals (intima/media thickness 2.3 ± 0.33 μm), enalapril reduced IH in Cx40–/– hypertensive mice by 30% (1.7 ± 0.35 μm; p = .037), while zofenopril abrogated IH (0.4 ± 0.16 μm; p < .002 vs. control and p > .99 vs. sham operated Cx40–/– mice). In WT normotensive mice, enalapril had no effect (0.9665 ± 0.2 μm in control vs. 1.140 ± 0.27 μm; p > .99), while zofenopril also abrogated IH (0.1623 ± 0.07 μm; p < .008 vs. control and p > .99 vs. sham operated WT mice). Zofenoprilat, but not enalaprilat, also prevented IH in human vein segments ex vivo. The effect of zofenopril on carotid and SMCs correlated with reduced SMC proliferation and migration. Zofenoprilat inhibited the mitogen activated protein kinase and mammalian target of rapamycin pathways in SMCs and human vein segments. Conclusion: Zofenopril provides extra beneficial effects compared with non-sulfhydryl ACEi in reducing SMC proliferation and re-stenosis, even in normotensive animals. These findings may hold broad clinical implications for patients suffering from vascular occlusive diseases and hypertension. © 2021 The Author(s) 
650 0 4 |a ACE inhibitor 
650 0 4 |a Angiotensin-Converting Enzyme Inhibitors 
650 0 4 |a animal 
650 0 4 |a Animals 
650 0 4 |a blood pressure 
650 0 4 |a Blood Pressure 
650 0 4 |a captopril 
650 0 4 |a Captopril 
650 0 4 |a Carotid Arteries 
650 0 4 |a carotid artery 
650 0 4 |a carotid artery obstruction 
650 0 4 |a Carotid Stenosis 
650 0 4 |a cell culture 
650 0 4 |a Cells, Cultured 
650 0 4 |a complication 
650 0 4 |a dipeptidyl carboxypeptidase inhibitor 
650 0 4 |a disease model 
650 0 4 |a Disease Models, Animal 
650 0 4 |a drug effect 
650 0 4 |a human 
650 0 4 |a Humans 
650 0 4 |a hydrogen sulfide 
650 0 4 |a Hydrogen Sulfide 
650 0 4 |a Hydrogen sulphide 
650 0 4 |a hyperplasia 
650 0 4 |a Hyperplasia 
650 0 4 |a hypertension 
650 0 4 |a Hypertension 
650 0 4 |a Hypertension 
650 0 4 |a intima 
650 0 4 |a Intimal hyperplasia 
650 0 4 |a male 
650 0 4 |a Male 
650 0 4 |a metabolism 
650 0 4 |a Mice 
650 0 4 |a mouse 
650 0 4 |a Myocytes, Smooth Muscle 
650 0 4 |a organ culture technique 
650 0 4 |a Organ Culture Techniques 
650 0 4 |a pathology 
650 0 4 |a primary cell culture 
650 0 4 |a Primary Cell Culture 
650 0 4 |a Proliferation 
650 0 4 |a Restenosis 
650 0 4 |a smooth muscle cell 
650 0 4 |a Smooth muscle cells 
650 0 4 |a Tunica Intima 
650 0 4 |a vein 
650 0 4 |a Veins 
650 0 4 |a zofenopril 
650 0 4 |a Zofenopril 
700 1 0 |a Allagnat, F.  |e author 
700 1 0 |a Corpataux, J.-M.  |e author 
700 1 0 |a Déglise, S.  |e author 
700 1 0 |a Deslarzes-Dubuis, C.  |e author 
700 1 0 |a Lambelet, M.  |e author 
700 1 0 |a Longchamp, A.  |e author 
700 1 0 |a Macabrey, D.  |e author 
700 1 0 |a Ozaki, C.K.  |e author 
773 |t European Journal of Vascular and Endovascular Surgery