Mechanical control of innate immune responses against viral infection revealed in a human lung alveolus chip

Mechanical breathing motions have a fundamental function in lung development and disease, but little is known about how they contribute to host innate immunity. Here we use a human lung alveolus chip that experiences cyclic breathing-like deformations to investigate whether physical forces influence...

Full description

Bibliographic Details
Main Authors: Bai, H. (Author), Belgur, C. (Author), Gilpin, S.E (Author), Goyal, G. (Author), Ingber, D.E (Author), Jiang, A. (Author), Nurani, A. (Author), Oh, C.Y (Author), Patil, A. (Author), Plebani, R. (Author), Powers, R.K (Author), Prantil-Baun, R. (Author), Rodas, M. (Author), Si, L. (Author), Zhai, Y. (Author)
Format: Article
Language:English
Published: Nature Research 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02752nam a2200493Ia 4500
001 10-1038-s41467-022-29562-4
008 220425s2022 CNT 000 0 und d
020 |a 20411723 (ISSN) 
245 1 0 |a Mechanical control of innate immune responses against viral infection revealed in a human lung alveolus chip 
260 0 |b Nature Research  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1038/s41467-022-29562-4 
520 3 |a Mechanical breathing motions have a fundamental function in lung development and disease, but little is known about how they contribute to host innate immunity. Here we use a human lung alveolus chip that experiences cyclic breathing-like deformations to investigate whether physical forces influence innate immune responses to viral infection. Influenza H3N2 infection of mechanically active chips induces a cascade of host responses including increased lung permeability, apoptosis, cell regeneration, cytokines production, and recruitment of circulating immune cells. Comparison with static chips reveals that breathing motions suppress viral replication by activating protective innate immune responses in epithelial and endothelial cells, which are mediated in part through activation of the mechanosensitive ion channel TRPV4 and signaling via receptor for advanced glycation end products (RAGE). RAGE inhibitors suppress cytokines induction, while TRPV4 inhibition attenuates both inflammation and viral burden, in infected chips with breathing motions. Therefore, TRPV4 and RAGE may serve as new targets for therapeutic intervention in patients infected with influenza and other potential pandemic viruses that cause life-threatening lung inflammation. © 2022, The Author(s). 
650 0 4 |a cytokine 
650 0 4 |a Cytokines 
650 0 4 |a Endothelial Cells 
650 0 4 |a endothelium cell 
650 0 4 |a human 
650 0 4 |a Humans 
650 0 4 |a Immunity, Innate 
650 0 4 |a influenza 
650 0 4 |a Influenza A virus (H3N2) 
650 0 4 |a Influenza A Virus, H3N2 Subtype 
650 0 4 |a Influenza, Human 
650 0 4 |a innate immunity 
650 0 4 |a lung 
650 0 4 |a Lung 
650 0 4 |a TRPV Cation Channels 
650 0 4 |a vanilloid receptor 
700 1 |a Bai, H.  |e author 
700 1 |a Belgur, C.  |e author 
700 1 |a Gilpin, S.E.  |e author 
700 1 |a Goyal, G.  |e author 
700 1 |a Ingber, D.E.  |e author 
700 1 |a Jiang, A.  |e author 
700 1 |a Nurani, A.  |e author 
700 1 |a Oh, C.Y.  |e author 
700 1 |a Patil, A.  |e author 
700 1 |a Plebani, R.  |e author 
700 1 |a Powers, R.K.  |e author 
700 1 |a Prantil-Baun, R.  |e author 
700 1 |a Rodas, M.  |e author 
700 1 |a Si, L.  |e author 
700 1 |a Zhai, Y.  |e author 
773 |t Nature Communications