Deficiency of lncRNA SNHG12 impairs ischemic limb neovascularization by altering an endothelial cell cycle pathway

SNHG12, a long noncoding RNA (lncRNA) dysregulated in atherosclerosis, is known to be a key regulator of vascular senescence in endothelial cells (ECs). However, its role in angiogenesis and peripheral artery disease has not been elucidated. Hind-limb ischemia studies using femoral artery ligation (...

Full description

Bibliographic Details
Main Authors: Cheng, H.S (Author), Feinberg, M.W (Author), Gross, D.A (Author), Haemmig, S. (Author), McCoy, M.G (Author), Pérez-Cremades, D. (Author), Ryan, T.E (Author), Salyers, Z. (Author), Wara, A.K.M.K (Author), Zhuang, R. (Author)
Format: Article
Language:English
Published: American Society for Clinical Investigation 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 04505nam a2201033Ia 4500
001 10-1172-jci-insight-150761
008 220420s2022 CNT 000 0 und d
020 |a 23793708 (ISSN) 
245 1 0 |a Deficiency of lncRNA SNHG12 impairs ischemic limb neovascularization by altering an endothelial cell cycle pathway 
260 0 |b American Society for Clinical Investigation  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1172/jci.insight.150761 
520 3 |a SNHG12, a long noncoding RNA (lncRNA) dysregulated in atherosclerosis, is known to be a key regulator of vascular senescence in endothelial cells (ECs). However, its role in angiogenesis and peripheral artery disease has not been elucidated. Hind-limb ischemia studies using femoral artery ligation (FAL) in mice showed that SNHG12 expression falls readily in the acute phase of the response to limb ischemia in gastrocnemius muscle and recovers to normal when blood flow recovery is restored to ischemic muscle, indicating that it likely plays a role in the angiogenic response to ischemia. Gain- and loss-of-function studies demonstrated that SNHG12 regulated angiogenesis - SNHG12 deficiency reduced cell proliferation, migration, and endothelial sprouting, whereas overexpression promoted these angiogenic functions. We identified SNHG12 binding partners by proteomics that may contribute to its role in angiogenesis, including IGF-2 mRNA-binding protein 3 (IGF2BP3, also known as IMP3). RNA-Seq profiling of SNHG12- deficient ECs showed effects on angiogenesis pathways and identified a strong effect on cell cycle regulation, which may be modulated by IMP3. Knockdown of SNHG12 in mice undergoing FAL using injected gapmeRs) decreased angiogenesis, an effect that was more pronounced in a model of insulin-resistant db/db mice. RNA-Seq profiling of the EC and non-EC compartments in these mice revealed a likely role of SNHG12 knockdown on Wnt, Notch, and angiopoietin signaling pathways. Together, these findings indicate that SNHG12 plays an important role in the angiogenic EC response to ischemia. © 2022, Gross et al. 
650 0 4 |a adult 
650 0 4 |a angiogenesis 
650 0 4 |a angiopoietin 
650 0 4 |a animal 
650 0 4 |a animal cell 
650 0 4 |a animal experiment 
650 0 4 |a animal model 
650 0 4 |a animal tissue 
650 0 4 |a Animals 
650 0 4 |a artery ligation 
650 0 4 |a Article 
650 0 4 |a blood flow 
650 0 4 |a cell cycle 
650 0 4 |a cell migration 
650 0 4 |a cell proliferation 
650 0 4 |a Cell Proliferation 
650 0 4 |a cohort analysis 
650 0 4 |a controlled study 
650 0 4 |a Endothelial Cells 
650 0 4 |a endothelium cell 
650 0 4 |a endothelium cell 
650 0 4 |a gain of function mutation 
650 0 4 |a gastrocnemius muscle 
650 0 4 |a gene 
650 0 4 |a gene control 
650 0 4 |a gene expression 
650 0 4 |a gene function 
650 0 4 |a gene identification 
650 0 4 |a gene knockdown 
650 0 4 |a Gene Knockdown Techniques 
650 0 4 |a gene overexpression 
650 0 4 |a genetics 
650 0 4 |a human 
650 0 4 |a human cell 
650 0 4 |a human tissue 
650 0 4 |a IGF2BP3 gene 
650 0 4 |a in vitro study 
650 0 4 |a in vivo study 
650 0 4 |a insulin resistance 
650 0 4 |a ischemia 
650 0 4 |a Ischemia 
650 0 4 |a limb ischemia 
650 0 4 |a long untranslated RNA 
650 0 4 |a long untranslated RNA 
650 0 4 |a loss of function mutation 
650 0 4 |a male 
650 0 4 |a Male 
650 0 4 |a metabolism 
650 0 4 |a Mice 
650 0 4 |a mouse 
650 0 4 |a muscle ischemia 
650 0 4 |a Neovascularization, Physiologic 
650 0 4 |a nonhuman 
650 0 4 |a Notch receptor 
650 0 4 |a Notch signaling 
650 0 4 |a pathogenesis 
650 0 4 |a Peripheral Arterial Disease 
650 0 4 |a peripheral occlusive artery disease 
650 0 4 |a phenotype 
650 0 4 |a physiology 
650 0 4 |a proteomics 
650 0 4 |a RNA sequencing 
650 0 4 |a RNA, Long Noncoding 
650 0 4 |a SNHG12 gene 
650 0 4 |a Wnt protein 
650 0 4 |a Wnt signaling 
700 1 0 |a Cheng, H.S.  |e author 
700 1 0 |a Feinberg, M.W.  |e author 
700 1 0 |a Gross, D.A.  |e author 
700 1 0 |a Haemmig, S.  |e author 
700 1 0 |a McCoy, M.G.  |e author 
700 1 0 |a Pérez-Cremades, D.  |e author 
700 1 0 |a Ryan, T.E.  |e author 
700 1 0 |a Salyers, Z.  |e author 
700 1 0 |a Wara, A.K.M.K.  |e author 
700 1 0 |a Zhuang, R.  |e author 
773 |t JCI Insight