Multiparametric Analyses of Hepatocellular Carcinoma Somatic Mouse Models and Their Associated Tumor Microenvironment

The rising incidence and increasing mortality of hepatocellular carcinoma (HCC), combined with its high tumor heterogeneity, lack of druggable targets, and tendency to develop resistance to chemotherapeutics, make the development of better models for this cancer an urgent challenge. To better mimic...

Full description

Bibliographic Details
Main Authors: Akkari, L. (Author), de Groot, M.H.P (Author), de Wit, N. (Author), Klarenbeek, S. (Author), Ramirez, C.F.A (Author), Taranto, D. (Author), Van Baalen, M. (Author), Vegna, S. (Author)
Format: Article
Language:English
Published: Blackwell Publishing Inc. 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 05130nam a2200745Ia 4500
001 10.1002-cpz1.147
008 220427s2021 CNT 000 0 und d
020 |a 26911299 (ISSN) 
245 1 0 |a Multiparametric Analyses of Hepatocellular Carcinoma Somatic Mouse Models and Their Associated Tumor Microenvironment 
260 0 |b Blackwell Publishing Inc.  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1002/cpz1.147 
520 3 |a The rising incidence and increasing mortality of hepatocellular carcinoma (HCC), combined with its high tumor heterogeneity, lack of druggable targets, and tendency to develop resistance to chemotherapeutics, make the development of better models for this cancer an urgent challenge. To better mimic the high diversity within the HCC genetic landscape, versatile somatic murine models have recently been developed using the hydrodynamic tail vein injection (HDTVi) system. These represent novel in vivo tools to interrogate HCC phenotype and response to therapy, and importantly, allow further analyses of the associated tumor microenvironment (TME) shaped by distinct genetic backgrounds. Here, we describe several optimized protocols to generate, collect, and experimentally utilize various samples obtained from HCC somatic mouse models generated by HDTVi. More specifically, we focus on techniques relevant to ex vivo analyses of the complex liver TME using multiparameter flow cytometric analyses of over 21 markers, immunohistochemistry, immunofluorescence, and histochemistry. We describe the transcriptional assessment of whole tissue, or of isolated immune subsets by flow-cytometry-based cell sorting, and other protein-oriented analyses. Together, these streamlined protocols allow the optimal use of each HCC murine model of interest and will assist researchers in deciphering the relations between cancer cell genetics and systemic and local changes in immune cell landscapes in the context of HCC progression. © 2021 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Generation of HCC mouse models by hydrodynamic tail vein injection. Basic Protocol 2: Assessment of HCC tumor progression by magnetic resonance imaging. Basic Protocol 3: Mouse sacrifice and sample collection in HCC mouse models. Support Protocol 1: Preparation of serum or plasma from blood. Basic Protocol 4: Single-cell preparation and HCC immune landscape phenotyping by flow cytometry. Alternate Protocol 1: Flow cytometric analysis of circulating immune cells. Support Protocol 2: Generation, maintenance, and characterization of HCC cell lines. Support Protocol 3: Fluorescence-activated cell sorting of liver single-cell preparation. Basic Protocol 5: Preparation and immunohistochemical analysis of tumor tissues from HCC-bearing liver. Alternate Protocol 2: Preparation and analyses for immunofluorescence staining of HCC-bearing liver. Support Protocol 4: Liver-specific phenotypic analyses of liver sections. Support Protocol 5: Immunohistochemical quantification in liver sections. Basic Protocol 6: Preparation of snap-frozen tumor tissue from extracted liver and transcriptional analyses of bulk tumor or sorted cells. Alternate Protocol 3: Protein analyses from HCC samples and serum or plasma. © 2021 The Authors. Current Protocols published by Wiley Periodicals LLC. 
650 0 4 |a animal 
650 0 4 |a animal cell 
650 0 4 |a animal experiment 
650 0 4 |a animal model 
650 0 4 |a animal tissue 
650 0 4 |a Animals 
650 0 4 |a article 
650 0 4 |a cancer growth 
650 0 4 |a Carcinoma, Hepatocellular 
650 0 4 |a disease model 
650 0 4 |a Disease Models, Animal 
650 0 4 |a ex vivo study 
650 0 4 |a flow cytometry 
650 0 4 |a fluorescence activated cell sorting 
650 0 4 |a genetic transcription 
650 0 4 |a genetics 
650 0 4 |a hepatocellular carcinoma 
650 0 4 |a hepatocellular carcinoma cell line 
650 0 4 |a histopathology 
650 0 4 |a hydrodynamics 
650 0 4 |a immunocompetent cell 
650 0 4 |a immunofluorescence 
650 0 4 |a immunohistochemistry 
650 0 4 |a intravenous drug administration 
650 0 4 |a liver cell carcinoma 
650 0 4 |a Liver Neoplasms 
650 0 4 |a liver tumor 
650 0 4 |a male 
650 0 4 |a Mice 
650 0 4 |a mouse 
650 0 4 |a mouse model 
650 0 4 |a multi-parametric flow cytometry 
650 0 4 |a nonhuman 
650 0 4 |a nuclear magnetic resonance imaging 
650 0 4 |a phenotype 
650 0 4 |a protein analysis 
650 0 4 |a somatic cell genetics 
650 0 4 |a somatic murine models 
650 0 4 |a tail vein 
650 0 4 |a tumor growth 
650 0 4 |a tumor microenvironment 
650 0 4 |a tumor microenvironment 
650 0 4 |a tumor microenvironment 
650 0 4 |a Tumor Microenvironment 
700 1 |a Akkari, L.  |e author 
700 1 |a de Groot, M.H.P.  |e author 
700 1 |a de Wit, N.  |e author 
700 1 |a Klarenbeek, S.  |e author 
700 1 |a Ramirez, C.F.A.  |e author 
700 1 |a Taranto, D.  |e author 
700 1 |a Van Baalen, M.  |e author 
700 1 |a Vegna, S.  |e author 
773 |t Current Protocols