Highly Selective, CRISPR/Cas9-Mediated Isolation of Genes and Genomic Loci from Complex Genomes by TAR Cloning in Yeast

Here we describe an updated TAR cloning protocol for the selective and efficient isolation of any genomic fragment or gene of interest up to 280 kb in size from genomic DNA. The method exploits the special recombination machinery of the yeast Saccharomyces cerevisiae. TAR cloning is based on the hig...

Full description

Bibliographic Details
Main Authors: Kim, J.-H (Author), Kouprina, N. (Author), Larionov, V. (Author)
Format: Article
Language:English
Published: John Wiley and Sons Inc 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 05297nam a2200985Ia 4500
001 10.1002-cpz1.207
008 220427s2021 CNT 000 0 und d
020 |a 26911299 (ISSN) 
245 1 0 |a Highly Selective, CRISPR/Cas9-Mediated Isolation of Genes and Genomic Loci from Complex Genomes by TAR Cloning in Yeast 
260 0 |b John Wiley and Sons Inc  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1002/cpz1.207 
520 3 |a Here we describe an updated TAR cloning protocol for the selective and efficient isolation of any genomic fragment or gene of interest up to 280 kb in size from genomic DNA. The method exploits the special recombination machinery of the yeast Saccharomyces cerevisiae. TAR cloning is based on the high level of in vivo recombination that occurs between a specific genomic DNA fragment of interest and targeting sequences (hooks) in a TAR vector that are homologous to the 5′ and 3′ ends of the targeted region. Upon co-transformation into yeast, this results in the isolation of the chromosomal region of interest as a circular YAC molecule, which then propagates and segregates in yeast cells and can be selected for. In the updated TAR cloning protocol described here, the fraction of region-positive clones typically obtained is increased from 1% up to 35% by pre-treatment of the genomic DNA with specifically designed CRISPR/Cas9 endonucleases that create double-strand breaks (DSBs) bracketing the target genomic DNA sequence, thereby making the ends of the chromosomal region of interest highly recombinogenic. In addition, a new TAR vector was constructed that contains YAC and BAC cassettes, permitting direct transfer of a TAR-cloned DNA from yeast to bacterial cells. Once the TAR vector with the hooks is constructed and genomic DNA is prepared, the entire procedure takes 3 weeks to complete. The updated TAR protocol does not require significant yeast experience or extensively time-consuming yeast work because screening only about a dozen yeast transformants is typically enough to find a clone with the region of interest. TAR cloning of chromosomal fragments, individual genes, or gene families can be used for functional, structural, and population studies, for comparative genomics, and for long-range haplotyping, and has potential for gene therapy. Published 2021. This article is a U.S. Government work and is in the public domain in the USA. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Preparation of CRISPR/Cas9-treated genomic DNA for TAR cloning. Basic Protocol 2: Isolation of a gene or genomic locus by TAR cloning. Basic Protocol 3: Transfer of TAR/YAC/BAC isolates from yeast to E. coli. Published 2021. This article is a U.S. Government work and is in the public domain in the USA. Current Protocols published by Wiley Periodicals LLC. 
650 0 4 |a Agrobacterium tumefaciens 
650 0 4 |a Article 
650 0 4 |a bacterial cell 
650 0 4 |a bioinformatics 
650 0 4 |a chemical reaction kinetics 
650 0 4 |a chromosome 
650 0 4 |a Chromosomes, Artificial, Yeast 
650 0 4 |a Cloning, Molecular 
650 0 4 |a clustered regularly interspaced short palindromic repeat 
650 0 4 |a comparative genomics 
650 0 4 |a controlled study 
650 0 4 |a CRISPR associated endonuclease Cas9 
650 0 4 |a CRISPR Cas system 
650 0 4 |a CRISPR/Cas9 
650 0 4 |a CRISPR-Cas Systems 
650 0 4 |a CRISPR-CAS9 system 
650 0 4 |a DNA extraction 
650 0 4 |a DNA fragment 
650 0 4 |a DNA isolation 
650 0 4 |a DNA replication origin 
650 0 4 |a DNA sequence 
650 0 4 |a DNA strand breakage 
650 0 4 |a double stranded DNA break 
650 0 4 |a electroporation 
650 0 4 |a endonuclease 
650 0 4 |a enzyme activity 
650 0 4 |a Escherichia coli 
650 0 4 |a Escherichia coli 
650 0 4 |a exportin 1 
650 0 4 |a gene editing 
650 0 4 |a gene isolation 
650 0 4 |a gene locus 
650 0 4 |a gene therapy 
650 0 4 |a gene vector 
650 0 4 |a genetic recombination 
650 0 4 |a Genetic Vectors 
650 0 4 |a genetics 
650 0 4 |a genome 
650 0 4 |a genomic DNA 
650 0 4 |a genomic fragment 
650 0 4 |a genomics 
650 0 4 |a Genomics 
650 0 4 |a haplotype 
650 0 4 |a homologous recombination 
650 0 4 |a human 
650 0 4 |a Humans 
650 0 4 |a molecular cloning 
650 0 4 |a molecular cloning 
650 0 4 |a multigene family 
650 0 4 |a mutational analysis 
650 0 4 |a nonhuman 
650 0 4 |a nuclease 
650 0 4 |a polymerase chain reaction 
650 0 4 |a population research 
650 0 4 |a protein purification 
650 0 4 |a proteome 
650 0 4 |a Recombination, Genetic 
650 0 4 |a Saccharomyces cerevisiae 
650 0 4 |a Saccharomyces cerevisiae 
650 0 4 |a Saccharomyces cerevisiae 
650 0 4 |a spheroplast 
650 0 4 |a strategic planning 
650 0 4 |a Streptococcus pyogenes 
650 0 4 |a structure activity relation 
650 0 4 |a TAR cloning 
650 0 4 |a transformation-associated recombination 
650 0 4 |a whole genome sequencing 
650 0 4 |a yeast 
650 0 4 |a yeast artificial chromosome 
700 1 |a Kim, J.-H.  |e author 
700 1 |a Kouprina, N.  |e author 
700 1 |a Larionov, V.  |e author 
773 |t Current Protocols