A computational framework for modeling cell–matrix interactions in soft biological tissues

Living soft tissues appear to promote the development and maintenance of a preferred mechanical state within a defined tolerance around a so-called set point. This phenomenon is often referred to as mechanical homeostasis. In contradiction to the prominent role of mechanical homeostasis in various (...

Full description

Bibliographic Details
Main Authors: Aydin, R.C (Author), Cyron, C.J (Author), Eichinger, J.F (Author), Grill, M.J (Author), Humphrey, J.D (Author), Kermani, I.D (Author), Wall, W.A (Author)
Format: Article
Language:English
Published: Springer Science and Business Media Deutschland GmbH 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 04164nam a2200973Ia 4500
001 10.1007-s10237-021-01480-2
008 220427s2021 CNT 000 0 und d
020 |a 16177959 (ISSN) 
245 1 0 |a A computational framework for modeling cell–matrix interactions in soft biological tissues 
260 0 |b Springer Science and Business Media Deutschland GmbH  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1007/s10237-021-01480-2 
520 3 |a Living soft tissues appear to promote the development and maintenance of a preferred mechanical state within a defined tolerance around a so-called set point. This phenomenon is often referred to as mechanical homeostasis. In contradiction to the prominent role of mechanical homeostasis in various (patho)physiological processes, its underlying micromechanical mechanisms acting on the level of individual cells and fibers remain poorly understood, especially how these mechanisms on the microscale lead to what we macroscopically call mechanical homeostasis. Here, we present a novel computational framework based on the finite element method that is constructed bottom up, that is, it models key mechanobiological mechanisms such as actin cytoskeleton contraction and molecular clutch behavior of individual cells interacting with a reconstructed three-dimensional extracellular fiber matrix. The framework reproduces many experimental observations regarding mechanical homeostasis on short time scales (hours), in which the deposition and degradation of extracellular matrix can largely be neglected. This model can serve as a systematic tool for future in silico studies of the origin of the numerous still unexplained experimental observations about mechanical homeostasis. © 2021, The Author(s). 
650 0 4 |a Actin Cytoskeleton 
650 0 4 |a actin filament 
650 0 4 |a Article 
650 0 4 |a biological model 
650 0 4 |a Biomechanical Phenomena 
650 0 4 |a biomechanics 
650 0 4 |a cell communication 
650 0 4 |a Cell Communication 
650 0 4 |a cell density 
650 0 4 |a cell matrix interaction 
650 0 4 |a cell–extracellular matrix interaction 
650 0 4 |a chemistry 
650 0 4 |a collagen 
650 0 4 |a Collagen 
650 0 4 |a Computational framework 
650 0 4 |a computer language 
650 0 4 |a computer simulation 
650 0 4 |a Computer Simulation 
650 0 4 |a conceptual framework 
650 0 4 |a controlled study 
650 0 4 |a cross linking 
650 0 4 |a cytoskeleton 
650 0 4 |a Cytoskeleton 
650 0 4 |a degradation 
650 0 4 |a discrete fiber model 
650 0 4 |a elastin 
650 0 4 |a Elastin 
650 0 4 |a Extracellular fibers 
650 0 4 |a Extracellular matrices 
650 0 4 |a extracellular matrix 
650 0 4 |a Extracellular Matrix 
650 0 4 |a finite element analysis 
650 0 4 |a Finite Element Analysis 
650 0 4 |a finite element method 
650 0 4 |a growth and remodeling 
650 0 4 |a Histology 
650 0 4 |a homeostasis 
650 0 4 |a Homeostasis 
650 0 4 |a human 
650 0 4 |a Humans 
650 0 4 |a integrin 
650 0 4 |a Integrins 
650 0 4 |a Markov chain 
650 0 4 |a mathematical computing 
650 0 4 |a mechanical homeostasis 
650 0 4 |a Mechanical homeostasis 
650 0 4 |a mechanical stress 
650 0 4 |a Mechanisms 
650 0 4 |a metabolism 
650 0 4 |a Micromechanical mechanisms 
650 0 4 |a Models, Biological 
650 0 4 |a Molecular clutches 
650 0 4 |a Physiological process 
650 0 4 |a physiology 
650 0 4 |a Programming Languages 
650 0 4 |a Proteins 
650 0 4 |a rigidity 
650 0 4 |a Soft biological tissue 
650 0 4 |a soft tissue 
650 0 4 |a Stochastic Processes 
650 0 4 |a Stress, Mechanical 
650 0 4 |a tension 
650 0 4 |a Three dimensional computer graphics 
650 0 4 |a Tissue 
700 1 |a Aydin, R.C.  |e author 
700 1 |a Cyron, C.J.  |e author 
700 1 |a Eichinger, J.F.  |e author 
700 1 |a Grill, M.J.  |e author 
700 1 |a Humphrey, J.D.  |e author 
700 1 |a Kermani, I.D.  |e author 
700 1 |a Wall, W.A.  |e author 
773 |t Biomechanics and Modeling in Mechanobiology