Label-free detection of transport kinetics and inhibitor binding of membrane transport proteins with a two-mode plasmonic sensor

Membrane transporters translocate molecules across cell membranes and are involved in a variety of cellular processes. However, there is still no label-free technique for measuring the transport kinetics of non-charged species through membrane transporters. Here, we develop a new method based on sur...

Full description

Bibliographic Details
Main Authors: Chang, S.-Y (Author), Chao, L. (Author), Hsiao, K.-H (Author), Kuo, C.-J (Author), Kuo, C.-W (Author), Kuo, T.-H (Author), Lee, H.-A (Author), Lin, T.-R (Author), Lin, Y.-T (Author), Tanady, K. (Author), Yang, M.-H (Author)
Format: Article
Language:English
Published: Elsevier Ltd 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 03375nam a2200529Ia 4500
001 10.1016-j.biosx.2022.100183
008 220718s2022 CNT 000 0 und d
020 |a 25901370 (ISSN) 
245 1 0 |a Label-free detection of transport kinetics and inhibitor binding of membrane transport proteins with a two-mode plasmonic sensor 
260 0 |b Elsevier Ltd  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1016/j.biosx.2022.100183 
520 3 |a Membrane transporters translocate molecules across cell membranes and are involved in a variety of cellular processes. However, there is still no label-free technique for measuring the transport kinetics of non-charged species through membrane transporters. Here, we develop a new method based on surface plasmon resonance (SPR) and plasmon-waveguide resonance (PWR) to measure transporter function and ligand binding simultaneously. The PWR/SPR-combined sensor chip comprises a silica layer with micron-sized pores on a thin gold film, and the geometry allows the appearance of two independent plasmonic modes. The electromagnetic enhancement regions of the SPR-associated mode and the PWR-associated mode are localized inside the pore directly above the gold film and outside the pore above the silica layer, respectively, and can be used to detect refractive index or environmental changes in the corresponding regions. We deposited cell membrane vesicles onto the sensor chip to form pore-spanning cell membrane patches containing transporters of interest. Only species transported across the membrane can enter into the pore region and be detected by the SPR-associated mode, while ligand binding above the membrane can be detected by the PWR-associated mode. We used glucose transporters in HeLa cell membranes to demonstrate that the platform can be used to study how inhibitor binding can influence transport behaviors. More importantly, we successfully measured the glucose transport kinetics across the membrane. The obtained kinetic parameters of glucose transporters were comparable to those reported in studies using radiolabeled glucose, suggesting that this new label-free method can accurately characterize the membrane transport kinetics. © 2022 The Authors 
650 0 4 |a Biosensor 
650 0 4 |a Glucose 
650 0 4 |a Gold 
650 0 4 |a Kinetics 
650 0 4 |a Label-free detection 
650 0 4 |a Lanthanum compounds 
650 0 4 |a Ligand binding 
650 0 4 |a Ligands 
650 0 4 |a Membrane transporter 
650 0 4 |a Membrane transporters 
650 0 4 |a Membranes 
650 0 4 |a Metallic films 
650 0 4 |a Plasmon waveguide resonances 
650 0 4 |a Plasmonic chip 
650 0 4 |a Plasmonics 
650 0 4 |a Refractive index 
650 0 4 |a Sensor chips 
650 0 4 |a Silica 
650 0 4 |a Silica layers 
650 0 4 |a Surface plasmon resonance 
650 0 4 |a Surface-plasmon resonance 
650 0 4 |a Transport kinetic 
650 0 4 |a Transport kinetics 
700 1 |a Chang, S.-Y.  |e author 
700 1 |a Chao, L.  |e author 
700 1 |a Hsiao, K.-H.  |e author 
700 1 |a Kuo, C.-J.  |e author 
700 1 |a Kuo, C.-W.  |e author 
700 1 |a Kuo, T.-H.  |e author 
700 1 |a Lee, H.-A.  |e author 
700 1 |a Lin, T.-R.  |e author 
700 1 |a Lin, Y.-T.  |e author 
700 1 |a Tanady, K.  |e author 
700 1 |a Yang, M.-H.  |e author 
773 |t Biosensors and Bioelectronics: X