What we count dictates how we count: A tale of two encodings

We argue that what we count has a crucial impact on how we count, to the extent that even adults may have difficulty using elementary mathematical notions in concrete situations. Specifically, we investigate how the use of certain types of quantities (durations, heights, number of floors) may emphas...

Full description

Bibliographic Details
Main Authors: Gros, H. (Author), Sander, E. (Author), Thibaut, J.-P (Author)
Format: Article
Language:English
Published: Elsevier B.V. 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 03129nam a2200529Ia 4500
001 10.1016-j.cognition.2021.104665
008 220427s2021 CNT 000 0 und d
020 |a 00100277 (ISSN) 
245 1 0 |a What we count dictates how we count: A tale of two encodings 
260 0 |b Elsevier B.V.  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1016/j.cognition.2021.104665 
520 3 |a We argue that what we count has a crucial impact on how we count, to the extent that even adults may have difficulty using elementary mathematical notions in concrete situations. Specifically, we investigate how the use of certain types of quantities (durations, heights, number of floors) may emphasize the ordinality of the numbers featured in a problem, whereas other quantities (collections, weights, prices) may emphasize the cardinality of the depicted numerical situations. We suggest that this distinction leads to the construction of one of two possible encodings, either a cardinal or an ordinal representation. This difference should, in turn, constrain the way we approach problems, influencing our mathematical reasoning in multiple activities. This hypothesis is tested in six experiments (N = 916), using different versions of multiple-strategy arithmetic word problems. We show that the distinction between cardinal and ordinal quantities predicts problem sorting (Experiment 1), perception of similarity between problems (Experiment 2), direct problem comparison (Experiment 3), choice of a solving algorithm (Experiment 4), problem solvability estimation (Experiment 5) and solution validity assessment (Experiment 6). The results provide converging clues shedding light into the fundamental importance of the cardinal versus ordinal distinction on adults' reasoning about numerical situations. Overall, we report multiple evidence that general, non-mathematical knowledge associated with the use of different quantities shapes adults' encoding, recoding and solving of mathematical word problems. The implications regarding mathematical cognition and theories of arithmetic problem solving are discussed. © 2021 Elsevier B.V. 
650 0 4 |a adult 
650 0 4 |a Adult 
650 0 4 |a algorithm 
650 0 4 |a arithmetic 
650 0 4 |a Arithmetic problem solving 
650 0 4 |a article 
650 0 4 |a Cardinality 
650 0 4 |a cognition 
650 0 4 |a Cognition 
650 0 4 |a cognitive model 
650 0 4 |a female 
650 0 4 |a human 
650 0 4 |a human experiment 
650 0 4 |a Humans 
650 0 4 |a knowledge 
650 0 4 |a Knowledge 
650 0 4 |a major clinical study 
650 0 4 |a male 
650 0 4 |a Mathematical reasoning 
650 0 4 |a mathematics 
650 0 4 |a Mathematics 
650 0 4 |a Mental model 
650 0 4 |a numerical cognition 
650 0 4 |a Numerical cognition 
650 0 4 |a Ordinality 
650 0 4 |a perception 
650 0 4 |a price 
650 0 4 |a problem solving 
650 0 4 |a Problem Solving 
650 0 4 |a reasoning 
650 0 4 |a validity 
700 1 |a Gros, H.  |e author 
700 1 |a Sander, E.  |e author 
700 1 |a Thibaut, J.-P.  |e author 
773 |t Cognition