Combining mutation and horizontal gene transfer in a within-host model of antibiotic resistance

Antibiotics are used extensively to control infections in humans and animals, usually by injection or a course of oral tablets. There are several methods by which bacteria can develop antimicrobial resistance (AMR), including mutation during DNA replication and plasmid mediated horizontal gene trans...

Full description

Bibliographic Details
Main Authors: Benschop, J. (Author), Burgess, S. (Author), French, N.P (Author), Marshall, J.C (Author), Roberts, M.G (Author), Toombs-Ruane, L.J (Author)
Format: Article
Language:English
Published: Elsevier Inc. 2021
Subjects:
DNA
Online Access:View Fulltext in Publisher
LEADER 04117nam a2200973Ia 4500
001 10.1016-j.mbs.2021.108656
008 220427s2021 CNT 000 0 und d
020 |a 00255564 (ISSN) 
245 1 0 |a Combining mutation and horizontal gene transfer in a within-host model of antibiotic resistance 
260 0 |b Elsevier Inc.  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1016/j.mbs.2021.108656 
520 3 |a Antibiotics are used extensively to control infections in humans and animals, usually by injection or a course of oral tablets. There are several methods by which bacteria can develop antimicrobial resistance (AMR), including mutation during DNA replication and plasmid mediated horizontal gene transfer (HGT). We present a model for the development of AMR within a single host animal. We derive criteria for a resistant mutant strain to replace the existing wild-type bacteria, and for co-existence of the wild-type and mutant. Where resistance develops through HGT via conjugation we derive criteria for the resistant strain to be excluded or co-exist with the wild-type. Our results are presented as bifurcation diagrams with thresholds determined by the relative fitness of the bacteria strains, expressed in terms of reproduction numbers. The results show that it is possible that applying and then relaxing antibiotic control may lead to the bacterial load returning to pre-control levels, but with an altered structure with regard to the variants that comprise the population. Removing antimicrobial selection pressure will not necessarily reduce AMR and, at a population level, other approaches to infection prevention and control are required, particularly when AMR is driven by both mutation and mobile genetic elements. © 2021 
650 0 4 |a animal 
650 0 4 |a Animals 
650 0 4 |a Animals 
650 0 4 |a Anti-Bacterial Agents 
650 0 4 |a Antibiotic controls 
650 0 4 |a antibiotic resistance 
650 0 4 |a antibiotic resistance 
650 0 4 |a Antibiotic resistance 
650 0 4 |a Antibiotics 
650 0 4 |a antiinfective agent 
650 0 4 |a Antimicrobial resistance 
650 0 4 |a Antimicrobial resistances 
650 0 4 |a Article 
650 0 4 |a Bacteria 
650 0 4 |a Bacteria 
650 0 4 |a Bacteria (microorganisms) 
650 0 4 |a bacterial growth 
650 0 4 |a bacterial load 
650 0 4 |a bacterial mutation 
650 0 4 |a bacterial strain 
650 0 4 |a bacterium 
650 0 4 |a bacterium conjugation 
650 0 4 |a Bifurcation diagram 
650 0 4 |a biological model 
650 0 4 |a Cell proliferation 
650 0 4 |a coliform bacterium 
650 0 4 |a controlled study 
650 0 4 |a DNA 
650 0 4 |a DNA replication 
650 0 4 |a drug effect 
650 0 4 |a Drug Resistance, Bacterial 
650 0 4 |a Dynamical systems 
650 0 4 |a Escherichia coli 
650 0 4 |a Escherichia coli 
650 0 4 |a Escherichia coli 
650 0 4 |a gene transfer 
650 0 4 |a gene transfer 
650 0 4 |a Gene transfer 
650 0 4 |a Gene Transfer, Horizontal 
650 0 4 |a Genes 
650 0 4 |a genetics 
650 0 4 |a horizontal gene transfer 
650 0 4 |a Horizontal gene transfer 
650 0 4 |a Horizontal gene transfer 
650 0 4 |a Host Microbial Interactions 
650 0 4 |a human 
650 0 4 |a Humans 
650 0 4 |a infection control 
650 0 4 |a infection prevention 
650 0 4 |a mathematical computing 
650 0 4 |a mobile genetic element 
650 0 4 |a Models, Biological 
650 0 4 |a mutation 
650 0 4 |a mutation 
650 0 4 |a Mutation 
650 0 4 |a nonhuman 
650 0 4 |a plasmid 
650 0 4 |a Plasmid dynamics 
650 0 4 |a Plasmids 
650 0 4 |a Prevention and controls 
650 0 4 |a quinolone derivative 
650 0 4 |a Reproduction numbers 
650 0 4 |a Selection pressures 
650 0 4 |a steady state 
650 0 4 |a wild type 
700 1 |a Benschop, J.  |e author 
700 1 |a Burgess, S.  |e author 
700 1 |a French, N.P.  |e author 
700 1 |a Marshall, J.C.  |e author 
700 1 |a Roberts, M.G.  |e author 
700 1 |a Toombs-Ruane, L.J.  |e author 
773 |t Mathematical Biosciences