Van der Waals integration of high-κ perovskite oxides and two-dimensional semiconductors

Two-dimensional semiconductors can be used to build next-generation electronic devices with ultrascaled channel lengths. However, semiconductors need to be integrated with high-quality dielectrics—which are challenging to deposit. Here we show that single-crystal strontium titanate—a high-κ perovski...

Full description

Bibliographic Details
Main Authors: Gao, P. (Author), Han, K. (Author), Huang, K. (Author), Renshaw Wang, X. (Author), Wen, W. (Author), Xiong, Q. (Author), Xu, J. (Author), Yang, A.J (Author), Ye, C. (Author), Yu, T. (Author), Zhu, R. (Author)
Format: Article
Language:English
Published: Nature Research 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02384nam a2200505Ia 4500
001 10.1038-s41928-022-00753-7
008 220510s2022 CNT 000 0 und d
020 |a 25201131 (ISSN) 
245 1 0 |a Van der Waals integration of high-κ perovskite oxides and two-dimensional semiconductors 
260 0 |b Nature Research  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1038/s41928-022-00753-7 
520 3 |a Two-dimensional semiconductors can be used to build next-generation electronic devices with ultrascaled channel lengths. However, semiconductors need to be integrated with high-quality dielectrics—which are challenging to deposit. Here we show that single-crystal strontium titanate—a high-κ perovskite oxide—can be integrated with two-dimensional semiconductors using van der Waals forces. Strontium titanate thin films are grown on a sacrificial layer, lifted off and then transferred onto molybdenum disulfide and tungsten diselenide to make n-type and p-type transistors, respectively. The molybdenum disulfide transistors exhibit an on/off current ratio of 108 at a supply voltage of 1 V and a minimum subthreshold swing of 66 mV dec−1. We also show that the devices can be used to create low-power complementary metal–oxide–semiconductor inverter circuits. © 2022, The Author(s). 
650 0 4 |a Channel length 
650 0 4 |a High quality 
650 0 4 |a High-κ 
650 0 4 |a Layered semiconductors 
650 0 4 |a Molybdenum compounds 
650 0 4 |a Perovskite 
650 0 4 |a Perovskite oxides 
650 0 4 |a P-type 
650 0 4 |a Sacrificial layer 
650 0 4 |a Selenium compounds 
650 0 4 |a Single crystals 
650 0 4 |a Strontium titanates 
650 0 4 |a Sulfur compounds 
650 0 4 |a Thin-films 
650 0 4 |a Transistors 
650 0 4 |a Tungsten compounds 
650 0 4 |a Two-dimensional semiconductors 
650 0 4 |a Van der Waal 
650 0 4 |a Van der waals' forces 
650 0 4 |a Van der Waals forces 
700 1 |a Gao, P.  |e author 
700 1 |a Han, K.  |e author 
700 1 |a Huang, K.  |e author 
700 1 |a Renshaw Wang, X.  |e author 
700 1 |a Wen, W.  |e author 
700 1 |a Xiong, Q.  |e author 
700 1 |a Xu, J.  |e author 
700 1 |a Yang, A.J.  |e author 
700 1 |a Ye, C.  |e author 
700 1 |a Yu, T.  |e author 
700 1 |a Zhu, R.  |e author 
700 1 |a Zhu, R.  |e author 
773 |t Nature Electronics