Generation of feasible gripper trajectories in automated composite draping by means of optimization

Prepreg composites find great applicability in e.g. the automotive and aerospace industries. A major challenge with this class of material systems is the accurate placement of a fabric that can be very tacky and hence sticks to the mold surface. In this study, automatic draping of entire plies of wo...

Full description

Bibliographic Details
Main Authors: Jakobsen, J. (Author), Krogh, C. (Author), Sherwood, J.A (Author)
Format: Article
Language:English
Published: Taylor and Francis Ltd. 2019
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02452nam a2200397Ia 4500
001 10.1080-20550340.2019.1699691
008 220511s2019 CNT 000 0 und d
020 |a 20550359 (ISSN) 
245 1 0 |a Generation of feasible gripper trajectories in automated composite draping by means of optimization 
260 0 |b Taylor and Francis Ltd.  |c 2019 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1080/20550340.2019.1699691 
520 3 |a Prepreg composites find great applicability in e.g. the automotive and aerospace industries. A major challenge with this class of material systems is the accurate placement of a fabric that can be very tacky and hence sticks to the mold surface. In this study, automatic draping of entire plies of woven prepregs is considered. A robot end effector with a grid of actuated grippers is under development and it has the ability to position the plies onto double-curved mold surfaces of low curvature. The key issue is how the grippers of the end effector should move to achieve successful drapings of the plies that meet the quality requirements of the industry. In this study, an approximate ply model based on cables with bending stiffness is applied in an optimization framework where the gripper movements constitute the design variables. The optimization framework has taken inspiration from manual layup procedures. The numerical draping results indicate the usefulness of the cable model used in connection with the optimization framework. The next step is to implement the generated gripper trajectories on the physical robot system. © 2019, © 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 
650 0 4 |a Aerospace industry 
650 0 4 |a automation 
650 0 4 |a Automation 
650 0 4 |a Cables 
650 0 4 |a draping 
650 0 4 |a End effectors 
650 0 4 |a Grippers 
650 0 4 |a Molds 
650 0 4 |a Offline 
650 0 4 |a offline motion planning 
650 0 4 |a Optimization framework 
650 0 4 |a Prepreg composite 
650 0 4 |a Prepregs 
650 0 4 |a Quality requirements 
650 0 4 |a Robot end effector 
650 0 4 |a Trajectories 
650 0 4 |a trajectory optimization 
650 0 4 |a Trajectory optimization 
650 0 4 |a Weaving 
650 0 4 |a Woven prepreg 
700 1 |a Jakobsen, J.  |e author 
700 1 |a Krogh, C.  |e author 
700 1 |a Sherwood, J.A.  |e author 
773 |t Advanced Manufacturing: Polymer and Composites Science