Metal-insulator transition in monolayer MoS2via contactless chemical doping

Much effort has been made to modify the properties of transition metal dichalcogenide layers via their environment as a route to new functionalization. However, it remains a challenge to induce large electronic changes without chemically altering the layer or compromising its two-dimensionality. Her...

Full description

Bibliographic Details
Main Authors: Busse, C. (Author), Fischer, J. (Author), Jolie, W. (Author), Komsa, H.-P (Author), Michely, T. (Author), Murray, C. (Author), Van Efferen, C. (Author)
Format: Article
Language:English
Published: IOP Publishing Ltd 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02964nam a2200553Ia 4500
001 10.1088-2053-1583-ac5d0f
008 220425s2022 CNT 000 0 und d
020 |a 20531583 (ISSN) 
245 1 0 |a Metal-insulator transition in monolayer MoS2via contactless chemical doping 
260 0 |b IOP Publishing Ltd  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1088/2053-1583/ac5d0f 
520 3 |a Much effort has been made to modify the properties of transition metal dichalcogenide layers via their environment as a route to new functionalization. However, it remains a challenge to induce large electronic changes without chemically altering the layer or compromising its two-dimensionality. Here, a non-invasive technique is used to shift the chemical potential of monolayer MoS2 through p- and n-type doping of graphene (Gr), which remains a well-decoupled 2D substrate. With the intercalation of oxygen (O) under Gr, a nearly rigid Fermi level shift of 0.45 eV in MoS2 is demonstrated, whereas the intercalation of europium (Eu) induces a metal-insulator transition in MoS2, accompanied by a giant band gap reduction of 0.67 eV. Additionally, the effect of the substrate charge on 1D states within MoS2 mirror-twin boundaries (MTBs) is explored. It is found that the 1D nature of the MTB states is not compromised, even when MoS2 is made metallic. Furthermore, with the periodicity of the 1D states dependent on substrate-induced charging and depletion, the boundaries serve as chemical potential sensors functional up to room temperature. © 2022 The Author(s). Published by IOP Publishing Ltd. 
650 0 4 |a Chemical doping 
650 0 4 |a Chemical potential 
650 0 4 |a Contact less 
650 0 4 |a contactless doping 
650 0 4 |a Contactless doping 
650 0 4 |a Density functional theory 
650 0 4 |a density-functional theory 
650 0 4 |a Density-functional-theory 
650 0 4 |a Energy gap 
650 0 4 |a Graphene 
650 0 4 |a graphene substrate 
650 0 4 |a Graphene substrates 
650 0 4 |a Layered semiconductors 
650 0 4 |a Metal insulator boundaries 
650 0 4 |a Metal insulator transition 
650 0 4 |a metal-insulator transition 
650 0 4 |a Molybdenum compounds 
650 0 4 |a monolayer MoS2 
650 0 4 |a Monolayer MoS2 
650 0 4 |a Monolayers 
650 0 4 |a Property 
650 0 4 |a Scanning tunneling microscopy 
650 0 4 |a scanning tunneling microscopy/spectroscopy 
650 0 4 |a Scanning tunneling microscopy/spectroscopy 
650 0 4 |a Semiconductor insulator boundaries 
650 0 4 |a Substrates 
650 0 4 |a Transition metal dichalcogenides (TMD) 
650 0 4 |a Transition metals 
650 0 4 |a Twin boundaries 
700 1 |a Busse, C.  |e author 
700 1 |a Fischer, J.  |e author 
700 1 |a Jolie, W.  |e author 
700 1 |a Komsa, H.-P.  |e author 
700 1 |a Michely, T.  |e author 
700 1 |a Murray, C.  |e author 
700 1 |a Van Efferen, C.  |e author 
773 |t 2D Materials