IPhantom: A Framework for Automated Creation of Individualized Computational Phantoms and Its Application to CT Organ Dosimetry

Objective: This study aims to develop and validate a novel framework, iPhantom, for automated creation of patient-specific phantoms or 'digital-twins (DT)' using patient medical images. The framework is applied to assess radiation dose to radiosensitive organs in CT imaging of individual p...

Full description

Bibliographic Details
Main Authors: Abadi, E. (Author), Fu, W. (Author), Iliopoulos, A.-S (Author), Lo, J.Y (Author), Samei, E. (Author), Segars, W.P (Author), Sharma, S. (Author), Sun, X. (Author), Wang, Q. (Author)
Format: Article
Language:English
Published: Institute of Electrical and Electronics Engineers Inc. 2021
Subjects:
CT
Online Access:View Fulltext in Publisher
LEADER 05091nam a2201093Ia 4500
001 10.1109-JBHI.2021.3063080
008 220427s2021 CNT 000 0 und d
020 |a 21682194 (ISSN) 
245 1 0 |a IPhantom: A Framework for Automated Creation of Individualized Computational Phantoms and Its Application to CT Organ Dosimetry 
260 0 |b Institute of Electrical and Electronics Engineers Inc.  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1109/JBHI.2021.3063080 
520 3 |a Objective: This study aims to develop and validate a novel framework, iPhantom, for automated creation of patient-specific phantoms or 'digital-twins (DT)' using patient medical images. The framework is applied to assess radiation dose to radiosensitive organs in CT imaging of individual patients. Method: Given a volume of patient CT images, iPhantom segments selected anchor organs and structures (e.g., liver, bones, pancreas) using a learning-based model developed for multi-organ CT segmentation. Organs which are challenging to segment (e.g., intestines) are incorporated from a matched phantom template, using a diffeomorphic registration model developed for multi-organ phantom-voxels. The resulting digital-twin phantoms are used to assess organ doses during routine CT exams. Result: iPhantom was validated on both with a set of XCAT digital phantoms (n = 50) and an independent clinical dataset (n = 10) with similar accuracy. iPhantom precisely predicted all organ locations yielding Dice Similarity Coefficients (DSC) 0.6 - 1 for anchor organs and DSC of 0.3-0.9 for all other organs. iPhantom showed <10% errors in estimated radiation dose for the majority of organs, which was notably superior to the state-of-the-art baseline method (20-35% dose errors). Conclusion: iPhantom enables automated and accurate creation of patient-specific phantoms and, for the first time, provides sufficient and automated patient-specific dose estimates for CT dosimetry. Significance: The new framework brings the creation and application of CHPs (computational human phantoms) to the level of individual CHPs through automation, achieving wide and precise organ localization, paving the way for clinical monitoring, personalized optimization, and large-scale research. © 2013 IEEE. 
650 0 4 |a accuracy 
650 0 4 |a Article 
650 0 4 |a automation 
650 0 4 |a Automation 
650 0 4 |a Baseline methods 
650 0 4 |a bone 
650 0 4 |a breast 
650 0 4 |a calculation 
650 0 4 |a classification algorithm 
650 0 4 |a Clinical monitoring 
650 0 4 |a Clinical research 
650 0 4 |a comparative study 
650 0 4 |a computational human phantom 
650 0 4 |a Computational phantom 
650 0 4 |a Computational phantoms 
650 0 4 |a computer assisted tomography 
650 0 4 |a computer model 
650 0 4 |a Computerized tomography 
650 0 4 |a conceptual framework 
650 0 4 |a contour volume 
650 0 4 |a CT 
650 0 4 |a deformable registration 
650 0 4 |a Dice Similarity Coefficient 
650 0 4 |a diffeomorphic deformation 
650 0 4 |a diffeomorphic registration model 
650 0 4 |a Diffeomorphic registrations 
650 0 4 |a digital imaging and communications in medicine 
650 0 4 |a Digital twin 
650 0 4 |a dosimetry 
650 0 4 |a Dosimetry 
650 0 4 |a gallbladder 
650 0 4 |a geometry 
650 0 4 |a health care planning 
650 0 4 |a heart 
650 0 4 |a human 
650 0 4 |a Humans 
650 0 4 |a image quality 
650 0 4 |a image segmentation 
650 0 4 |a Image segmentation 
650 0 4 |a imaging phantom 
650 0 4 |a individualized computational phantom 
650 0 4 |a kidney 
650 0 4 |a large scale production 
650 0 4 |a Large-scale research 
650 0 4 |a learning based model 
650 0 4 |a Learning Based Models 
650 0 4 |a liver 
650 0 4 |a lung 
650 0 4 |a Markov chain Monte Carlo method 
650 0 4 |a Medical imaging 
650 0 4 |a multichannel large deformation diffeomorphic metric mapping 
650 0 4 |a normal distribution 
650 0 4 |a organ dose 
650 0 4 |a Phantoms 
650 0 4 |a Phantoms, Imaging 
650 0 4 |a photon transport 
650 0 4 |a preliminary data 
650 0 4 |a process optimization 
650 0 4 |a radiation dose 
650 0 4 |a radiation field 
650 0 4 |a Radiosensitive organs 
650 0 4 |a segmentation 
650 0 4 |a Similarity coefficients 
650 0 4 |a simulation 
650 0 4 |a soft tissue 
650 0 4 |a spleen 
650 0 4 |a statistical shape model 
650 0 4 |a thyroid gland 
650 0 4 |a Tomography, X-Ray Computed 
650 0 4 |a tube current modulation 
650 0 4 |a validation process 
650 0 4 |a x-ray computed tomography 
700 1 |a Abadi, E.  |e author 
700 1 |a Fu, W.  |e author 
700 1 |a Iliopoulos, A.-S.  |e author 
700 1 |a Lo, J.Y.  |e author 
700 1 |a Samei, E.  |e author 
700 1 |a Segars, W.P.  |e author 
700 1 |a Sharma, S.  |e author 
700 1 |a Sun, X.  |e author 
700 1 |a Wang, Q.  |e author 
773 |t IEEE Journal of Biomedical and Health Informatics