Experimental and theoretical insights into the effects of pH on catalysis of bond-cleavage by the lignin peroxidase isozyme H8 from Phanerochaete chrysosporium

Background: Lignin peroxidases catalyze a variety of reactions, resulting in cleavage of both β-O-4′ ether bonds and C–C bonds in lignin, both of which are essential for depolymerizing lignin into fragments amendable to biological or chemical upgrading to valuable products. Studies of the specificit...

Full description

Bibliographic Details
Main Authors: Adams, P.D (Author), Deng, K. (Author), Northen, T.R (Author), Pham, L.T.M (Author), Sale, K.L (Author), Simmons, B.A (Author), Singer, S.W (Author)
Format: Article
Language:English
Published: BioMed Central Ltd 2021
Subjects:
pH
Online Access:View Fulltext in Publisher
LEADER 04117nam a2200637Ia 4500
001 10.1186-s13068-021-01953-7
008 220427s2021 CNT 000 0 und d
020 |a 17546834 (ISSN) 
245 1 0 |a Experimental and theoretical insights into the effects of pH on catalysis of bond-cleavage by the lignin peroxidase isozyme H8 from Phanerochaete chrysosporium 
260 0 |b BioMed Central Ltd  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1186/s13068-021-01953-7 
520 3 |a Background: Lignin peroxidases catalyze a variety of reactions, resulting in cleavage of both β-O-4′ ether bonds and C–C bonds in lignin, both of which are essential for depolymerizing lignin into fragments amendable to biological or chemical upgrading to valuable products. Studies of the specificity of lignin peroxidases to catalyze these various reactions and the role reaction conditions such as pH play have been limited by the lack of assays that allow quantification of specific bond-breaking events. The subsequent theoretical understanding of the underlying mechanisms by which pH modulates the activity of lignin peroxidases remains nascent. Here, we report on combined experimental and theoretical studies of the effect of pH on the enzyme-catalyzed cleavage of β-O-4′ ether bonds and of C–C bonds by a lignin peroxidase isozyme H8 from Phanerochaete chrysosporium and an acid stabilized variant of the same enzyme. Results: Using a nanostructure initiator mass spectrometry assay that provides quantification of bond breaking in a phenolic model lignin dimer we found that catalysis of degradation of the dimer to products by an acid-stabilized variant of lignin peroxidase isozyme H8 increased from 38.4% at pH 5 to 92.5% at pH 2.6. At pH 2.6, the observed product distribution resulted from 65.5% β-O-4′ ether bond cleavage, 27.0% Cα-C1 carbon bond cleavage, and 3.6% Cα-oxidation as by-product. Using ab initio molecular dynamic simulations and climbing-image Nudge Elastic Band based transition state searches, we suggest the effect of lower pH is via protonation of aliphatic hydroxyl groups under which extremely acidic conditions resulted in lower energetic barriers for bond-cleavages, particularly β-O-4′ bonds. Conclusion: These coupled experimental results and theoretical explanations suggest pH is a key driving force for selective and efficient lignin peroxidase isozyme H8 catalyzed depolymerization of the phenolic lignin dimer and further suggest that engineering of lignin peroxidase isozyme H8 and other enzymes involved in lignin depolymerization should include targeting stability at low pH. © 2021, The Author(s). 
650 0 4 |a Ab initio molecular dynamic simulations 
650 0 4 |a Ab initio molecular dynamics 
650 0 4 |a Aliphatic hydroxyl groups 
650 0 4 |a catalysis 
650 0 4 |a Catalysis 
650 0 4 |a Catalysts 
650 0 4 |a Chemical bonds 
650 0 4 |a Chemical Bonds 
650 0 4 |a degradation 
650 0 4 |a Dimers 
650 0 4 |a Dimers 
650 0 4 |a Energetic barriers 
650 0 4 |a Ethers 
650 0 4 |a Ethers 
650 0 4 |a experimental study 
650 0 4 |a fungus 
650 0 4 |a Isoenzymes 
650 0 4 |a lignin 
650 0 4 |a Lignin 
650 0 4 |a Lignin degradation 
650 0 4 |a Lignin depolymerization 
650 0 4 |a Lignin peroxidase 
650 0 4 |a Mass spectrometry 
650 0 4 |a molecular analysis 
650 0 4 |a Molecular dynamics 
650 0 4 |a pH 
650 0 4 |a pH effects 
650 0 4 |a Phanerochaete chrysosporium 
650 0 4 |a Phanerochaete chrysosporium 
650 0 4 |a Phanerochaete chrysosporium 
650 0 4 |a Phanerochaete Chrysosporium 
650 0 4 |a Product distributions 
650 0 4 |a Quantum calculation 
650 0 4 |a Reaction conditions 
650 0 4 |a theoretical study 
650 0 4 |a Theoretical study 
700 1 |a Adams, P.D.  |e author 
700 1 |a Deng, K.  |e author 
700 1 |a Northen, T.R.  |e author 
700 1 |a Pham, L.T.M.  |e author 
700 1 |a Sale, K.L.  |e author 
700 1 |a Simmons, B.A.  |e author 
700 1 |a Singer, S.W.  |e author 
773 |t Biotechnology for Biofuels