LEADER 04387nam a2200733Ia 4500
001 10.1371-JOURNAL.PCBI.1008691
008 220427s2021 CNT 000 0 und d
020 |a 1553734X (ISSN) 
245 1 0 |a Computational analysis of GAL pathway pinpoints mechanisms underlying natural variation 
260 0 |b Public Library of Science  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1371/JOURNAL.PCBI.1008691 
520 3 |a Quantitative traits are measurable phenotypes that show continuous variation over a wide phenotypic range. Enormous effort has recently been put into determining the genetic influences on a variety of quantitative traits with mixed success. We identified a quantitative trait in a tractable model system, the GAL pathway in yeast, which controls the uptake and metabolism of the sugar galactose. GAL pathway activation depends both on galactose concentration and on the concentrations of competing, preferred sugars such as glucose. Natural yeast isolates show substantial variation in the behavior of the pathway. All studied yeast strains exhibit bimodal responses relative to external galactose concentration, i.e. a set of galactose concentrations existed at which both GAL-induced and GAL-repressed subpopulations were observed. However, these concentrations differed in different strains. We built a mechanistic model of the GAL pathway and identified parameters that are plausible candidates for capturing the phenotypic features of a set of strains including standard lab strains, natural variants, and mutants. In silico perturbation of these parameters identified variation in the intracellular galactose sensor, Gal3p, the negative feedback node within the GAL regulatory network, Gal80p, and the hexose transporters, HXT, as the main sources of the bimodal range variation. We were able to switch the phenotype of individual yeast strains in silico by tuning parameters related to these three elements. Determining the basis for these behavioral differences may give insight into how the GAL pathway processes information, and into the evolution of nutrient metabolism preferences in different strains. More generally, our method of identifying the key parameters that explain phenotypic variation in this system should be generally applicable to other quantitative traits. Copyright: © 2021 Hong et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. 
650 0 4 |a Article 
650 0 4 |a biological model 
650 0 4 |a biology 
650 0 4 |a carbohydrate metabolism 
650 0 4 |a Computational Biology 
650 0 4 |a computer model 
650 0 4 |a computer simulation 
650 0 4 |a Computer Simulation 
650 0 4 |a concentration (parameter) 
650 0 4 |a fungal strain 
650 0 4 |a fungus isolation 
650 0 4 |a Gal3 protein, S cerevisiae 
650 0 4 |a GAL80 protein, S cerevisiae 
650 0 4 |a galactose 
650 0 4 |a galactose 
650 0 4 |a Galactose 
650 0 4 |a gene expression regulation 
650 0 4 |a Gene Expression Regulation, Fungal 
650 0 4 |a genetic variation 
650 0 4 |a Genetic Variation 
650 0 4 |a genetics 
650 0 4 |a glucose transporter 
650 0 4 |a glucose transporter 
650 0 4 |a mathematical model 
650 0 4 |a Metabolic Networks and Pathways 
650 0 4 |a metabolism 
650 0 4 |a Models, Biological 
650 0 4 |a Monosaccharide Transport Proteins 
650 0 4 |a mutation 
650 0 4 |a Mutation 
650 0 4 |a negative feedback 
650 0 4 |a nonhuman 
650 0 4 |a nutrimetabolomics 
650 0 4 |a phenotype 
650 0 4 |a Phenotype 
650 0 4 |a phenotypic variation 
650 0 4 |a quantitative trait 
650 0 4 |a Quantitative Trait, Heritable 
650 0 4 |a repressor protein 
650 0 4 |a Repressor Proteins 
650 0 4 |a Saccharomyces cerevisiae 
650 0 4 |a Saccharomyces cerevisiae 
650 0 4 |a Saccharomyces cerevisiae protein 
650 0 4 |a Saccharomyces cerevisiae Proteins 
650 0 4 |a transcription factor 
650 0 4 |a Transcription Factors 
650 0 4 |a yeast 
700 1 |a Hong, J.  |e author 
700 1 |a Hua, B.  |e author 
700 1 |a Palme, J.  |e author 
700 1 |a Springer, M.  |e author 
773 |t PLoS Computational Biology