Multifunctional RNA-binding proteins influence mRNA abundance and translational efficiency of distinct sets of target genes

RNA-binding proteins (RBPs) can regulate more than a single aspect of RNA metabolism. We searched for such previously undiscovered multifunctionality within a set of 143 RBPs, by defining the predictive value of RBP abundance for the transcription and translation levels of known RBP target genes acr...

Full description

Bibliographic Details
Main Authors: Hubner, N. (Author), Ruiz-Orera, J. (Author), Schneider-Lunitz, V. (Author), vanHeesch, S. (Author)
Format: Article
Language:English
Published: Public Library of Science 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 03732nam a2200805Ia 4500
001 10.1371-journal.pcbi.1009658
008 220427s2021 CNT 000 0 und d
020 |a 1553734X (ISSN) 
245 1 0 |a Multifunctional RNA-binding proteins influence mRNA abundance and translational efficiency of distinct sets of target genes 
260 0 |b Public Library of Science  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1371/journal.pcbi.1009658 
520 3 |a RNA-binding proteins (RBPs) can regulate more than a single aspect of RNA metabolism. We searched for such previously undiscovered multifunctionality within a set of 143 RBPs, by defining the predictive value of RBP abundance for the transcription and translation levels of known RBP target genes across 80 human hearts. This led us to newly associate 27 RBPs with cardiac translational regulation in vivo. Of these, 21 impacted both RNA expression and translation, albeit for virtually independent sets of target genes. We highlight a subset of these, including G3BP1, PUM1, UCHL5, and DDX3X, where dual regulation is achieved through differential affinity for target length, by which separate biological processes are controlled. Like the RNA helicase DDX3X, the known splicing factors EFTUD2 and PRPF8—all identified as multifunctional RBPs by our analysis—selectively influence target translation rates depending on 5’ UTR structure. Our analyses identify dozens of RBPs as being multifunctional and pinpoint potential novel regulators of translation, postulating unanticipated complexity of protein-RNA interactions at consecutive stages of gene expression. © 2021 Schneider-Lunitz et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. 
650 0 4 |a 5' untranslated region 
650 0 4 |a Article 
650 0 4 |a BCLAF1 protein 
650 0 4 |a binding affinity 
650 0 4 |a biology 
650 0 4 |a cardiac muscle 
650 0 4 |a cohort analysis 
650 0 4 |a Computational Biology 
650 0 4 |a computer model 
650 0 4 |a controlled study 
650 0 4 |a cytology 
650 0 4 |a DDX3X protein 
650 0 4 |a DDX42 protein 
650 0 4 |a DDX6 protein 
650 0 4 |a DROSHA protein 
650 0 4 |a EFTUD2 protein 
650 0 4 |a FAM120A protein 
650 0 4 |a FASTKD2 protein 
650 0 4 |a G3BP1 protein 
650 0 4 |a GEMIN5 protein 
650 0 4 |a gene expression 
650 0 4 |a gene expression regulation 
650 0 4 |a Gene Expression Regulation 
650 0 4 |a genetics 
650 0 4 |a HNRNPM protein 
650 0 4 |a human 
650 0 4 |a human cell 
650 0 4 |a human tissue 
650 0 4 |a Humans 
650 0 4 |a in vivo study 
650 0 4 |a messenger RNA 
650 0 4 |a messenger RNA 
650 0 4 |a metabolism 
650 0 4 |a Myocardium 
650 0 4 |a NKRF protein 
650 0 4 |a NOLC1 protein 
650 0 4 |a Protein Biosynthesis 
650 0 4 |a protein synthesis 
650 0 4 |a PRPF8 protein 
650 0 4 |a PUM1 protein 
650 0 4 |a RBM22 protein 
650 0 4 |a RNA binding protein 
650 0 4 |a RNA binding protein 
650 0 4 |a RNA translation 
650 0 4 |a RNA, Messenger 
650 0 4 |a RNA-Binding Proteins 
650 0 4 |a SRSF1 protein 
650 0 4 |a SRSF7 protein 
650 0 4 |a TRA2A protein 
650 0 4 |a translation regulation 
650 0 4 |a U2AF2 protein 
650 0 4 |a UCHL5 protein 
650 0 4 |a unclassified drug 
700 1 |a Hubner, N.  |e author 
700 1 |a Ruiz-Orera, J.  |e author 
700 1 |a Schneider-Lunitz, V.  |e author 
700 1 |a vanHeesch, S.  |e author 
773 |t PLoS Computational Biology