Involvement of the Rostromedial Prefrontal Cortex in Human-Robot Interaction: fNIRS Evidence From a Robot-Assisted Motor Task

Assistive exoskeleton robots are being widely applied in neurorehabilitation to improve upper-limb motor and somatosensory functions. During robot-assisted exercises, the central nervous system appears to highly attend to external information-processing (IP) to efficiently interact with robotic assi...

Full description

Bibliographic Details
Main Authors: Araki, H. (Author), Araki, O. (Author), Fujita, N. (Author), Imada, N. (Author), Imura, T. (Author), Iwamoto, Y. (Author), Le, D.T (Author), Matsushita, K. (Author), Nishijo, H. (Author), Ogawa, H. (Author), Ono, T. (Author), Taki, S. (Author), Urakawa, S. (Author), Watanabe, K. (Author)
Format: Article
Language:English
Published: Frontiers Media S.A. 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 03696nam a2200565Ia 4500
001 10.3389-fnbot.2022.795079
008 220425s2022 CNT 000 0 und d
020 |a 16625218 (ISSN) 
245 1 0 |a Involvement of the Rostromedial Prefrontal Cortex in Human-Robot Interaction: fNIRS Evidence From a Robot-Assisted Motor Task 
260 0 |b Frontiers Media S.A.  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.3389/fnbot.2022.795079 
520 3 |a Assistive exoskeleton robots are being widely applied in neurorehabilitation to improve upper-limb motor and somatosensory functions. During robot-assisted exercises, the central nervous system appears to highly attend to external information-processing (IP) to efficiently interact with robotic assistance. However, the neural mechanisms underlying this process remain unclear. The rostromedial prefrontal cortex (rmPFC) may be the core of the executive resource allocation that generates biases in the allocation of processing resources toward an external IP according to current behavioral demands. Here, we used functional near-infrared spectroscopy to investigate the cortical activation associated with executive resource allocation during a robot-assisted motor task. During data acquisition, participants performed a right-arm motor task using elbow flexion-extension movements in three different loading conditions: robotic assistive loading (ROB), resistive loading (RES), and non-loading (NON). Participants were asked to strive for kinematic consistency in their movements. A one-way repeated measures analysis of variance and general linear model-based methods were employed to examine task-related activity. We demonstrated that hemodynamic responses in the ventral and dorsal rmPFC were higher during ROB than during NON. Moreover, greater hemodynamic responses in the ventral rmPFC were observed during ROB than during RES. Increased activation in ventral and dorsal rmPFC subregions may be involved in the executive resource allocation that prioritizes external IP during human-robot interactions. In conclusion, these findings provide novel insights regarding the involvement of executive control during a robot-assisted motor task. Copyright © 2022 Le, Watanabe, Ogawa, Matsushita, Imada, Taki, Iwamoto, Imura, Araki, Araki, Ono, Nishijo, Fujita and Urakawa. 
650 0 4 |a Assistive 
650 0 4 |a assistive exoskeleton robot 
650 0 4 |a Assistive exoskeleton robot 
650 0 4 |a Chemical activation 
650 0 4 |a Data acquisition 
650 0 4 |a executive function 
650 0 4 |a Executive function 
650 0 4 |a Exoskeleton (Robotics) 
650 0 4 |a Exoskeleton robots 
650 0 4 |a frontal pole 
650 0 4 |a Frontal pole 
650 0 4 |a Human robot interaction 
650 0 4 |a Hybrid assistive limb 
650 0 4 |a Hybrid Assistive Limb (HAL®) 
650 0 4 |a Hybrid assistive limbs 
650 0 4 |a Infrared devices 
650 0 4 |a Loading 
650 0 4 |a Near infrared spectroscopy 
650 0 4 |a Near-infrared spectroscopy 
650 0 4 |a NIRS (near-infrared spectroscopy) 
650 0 4 |a Prefrontal cortex 
650 0 4 |a prefrontal cortex (PFC) 
650 0 4 |a Resource allocation 
700 1 |a Araki, H.  |e author 
700 1 |a Araki, O.  |e author 
700 1 |a Fujita, N.  |e author 
700 1 |a Imada, N.  |e author 
700 1 |a Imura, T.  |e author 
700 1 |a Iwamoto, Y.  |e author 
700 1 |a Le, D.T.  |e author 
700 1 |a Matsushita, K.  |e author 
700 1 |a Nishijo, H.  |e author 
700 1 |a Ogawa, H.  |e author 
700 1 |a Ono, T.  |e author 
700 1 |a Taki, S.  |e author 
700 1 |a Urakawa, S.  |e author 
700 1 |a Watanabe, K.  |e author 
773 |t Frontiers in Neurorobotics