Improving the Robustness of Human-Machine Interactive Control for Myoelectric Prosthetic Hand During Arm Position Changing

Robust classification of natural hand grasp type based on electromyography (EMG) still has some shortcomings in the practical prosthetic hand control, owing to the influence of dynamic arm position changing during hand actions. This study provided a framework for robust hand grasp type classificatio...

Full description

Bibliographic Details
Main Authors: He, J. (Author), Huang, J. (Author), Ke, A. (Author), Wang, J. (Author)
Format: Article
Language:English
Published: Frontiers Media S.A. 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02435nam a2200421Ia 4500
001 10.3389-fnbot.2022.853773
008 220718s2022 CNT 000 0 und d
020 |a 16625218 (ISSN) 
245 1 0 |a Improving the Robustness of Human-Machine Interactive Control for Myoelectric Prosthetic Hand During Arm Position Changing 
260 0 |b Frontiers Media S.A.  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.3389/fnbot.2022.853773 
520 3 |a Robust classification of natural hand grasp type based on electromyography (EMG) still has some shortcomings in the practical prosthetic hand control, owing to the influence of dynamic arm position changing during hand actions. This study provided a framework for robust hand grasp type classification during dynamic arm position changes, improving both the “hardware” and “algorithm” components. In the hardware aspect, co-located synchronous EMG and force myography (FMG) signals are adopted as the multi-modal strategy. In the algorithm aspect, a sequential decision algorithm is proposed by combining the RNN-based deep learning model with a knowledge-based post-processing model. Experimental results showed that the classification accuracy of multi-modal EMG-FMG signals was increased by more than 10% compared with the EMG-only signal. Moreover, the classification accuracy of the proposed sequential decision algorithm improved the accuracy by more than 4% compared with other baseline models when using both EMG and FMG signals. Copyright © 2022 Ke, Huang, Wang and He. 
650 0 4 |a arm movement 
650 0 4 |a Arm movements 
650 0 4 |a Arm position 
650 0 4 |a Biomedical signal processing 
650 0 4 |a Decision algorithms 
650 0 4 |a Deep learning 
650 0 4 |a Electromyography-force myography control 
650 0 4 |a EMG-FMG control 
650 0 4 |a gesture recognition 
650 0 4 |a Gesture recognition 
650 0 4 |a Gestures recognition 
650 0 4 |a Hand grasps 
650 0 4 |a Knowledge based systems 
650 0 4 |a Multi-modal 
650 0 4 |a post-processing 
650 0 4 |a Post-processing 
650 0 4 |a Prosthetics 
650 0 4 |a robustness 
650 0 4 |a Robustness 
650 0 4 |a Robustness (control systems) 
650 0 4 |a Sequential decisions 
700 1 |a He, J.  |e author 
700 1 |a Huang, J.  |e author 
700 1 |a Ke, A.  |e author 
700 1 |a Wang, J.  |e author 
773 |t Frontiers in Neurorobotics  |x 16625218 (ISSN)  |g 16