De novo-designed transmembrane domains tune engineered receptor functions

De novo-designed receptor transmembrane domains (TMDs) present opportunities for precise control of cellular receptor functions. We developed a de novo design strategy for generating programmed membrane proteins (proMPs): single-pass α-helical TMDs that self-assemble through computationally defined...

Full description

Bibliographic Details
Main Authors: Call, M.E (Author), Call, M.J (Author), Chandler, N.J (Author), Cross, R.S (Author), Davey, A.S (Author), Elazar, A. (Author), Fleishman, S.J (Author), Jenkins, M.R (Author), Nguyen, J.V (Author), Trenker, R. (Author), Weinstein, J.Y (Author)
Format: Article
Language:English
Published: NLM (Medline) 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02303nam a2200409Ia 4500
001 10.7554-eLife.75660
008 220706s2022 CNT 000 0 und d
020 |a 2050084X (ISSN) 
245 1 0 |a De novo-designed transmembrane domains tune engineered receptor functions 
260 0 |b NLM (Medline)  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.7554/eLife.75660 
520 3 |a De novo-designed receptor transmembrane domains (TMDs) present opportunities for precise control of cellular receptor functions. We developed a de novo design strategy for generating programmed membrane proteins (proMPs): single-pass α-helical TMDs that self-assemble through computationally defined and crystallographically validated interfaces. We used these proMPs to program specific oligomeric interactions into a chimeric antigen receptor (CAR) that we expressed in mouse primary T cells and found that both in vitro CAR T cell cytokine release and in vivo antitumor activity scaled linearly with the oligomeric state encoded by the receptor TMD, from monomers up to tetramers. All programmed CARs stimulated substantially lower T cell cytokine release relative to the commonly used CD28 TMD, which we show elevated cytokine release through lateral recruitment of the endogenous T cell costimulatory receptor CD28. Precise design using orthogonal and modular TMDs thus provides a new way to program receptor structure and predictably tune activity for basic or applied synthetic biology. © 2022, Elazar et al. 
650 0 4 |a CAR T cell 
650 0 4 |a chimeric antigen receptor 
650 0 4 |a de novo design 
650 0 4 |a E. coli 
650 0 4 |a immunology 
650 0 4 |a immunotherapy 
650 0 4 |a inflammation 
650 0 4 |a membrane protein 
650 0 4 |a molecular biophysics 
650 0 4 |a mouse 
650 0 4 |a Rosetta 
650 0 4 |a structural biology 
650 0 4 |a transmembrane 
700 1 0 |a Call, M.E.  |e author 
700 1 0 |a Call, M.J.  |e author 
700 1 0 |a Chandler, N.J.  |e author 
700 1 0 |a Cross, R.S.  |e author 
700 1 0 |a Davey, A.S.  |e author 
700 1 0 |a Elazar, A.  |e author 
700 1 0 |a Fleishman, S.J.  |e author 
700 1 0 |a Jenkins, M.R.  |e author 
700 1 0 |a Nguyen, J.V.  |e author 
700 1 0 |a Trenker, R.  |e author 
700 1 0 |a Weinstein, J.Y.  |e author 
773 |t eLife