Design and fabrication of densely integrated silicon quantum dots using a VLSI compatible hydrogen silsesquioxane electron beam lithography process

Hydrogen silsesquioxane (HSQ) is a high resolution negative-tone electron beam resist allowing for direct transfer of nanostructures into silicon-on-insulator. Using this resist for electron beam lithography, we fabricate high density lithographically defined Silicon double quantum dot (QD) transist...

Full description

Bibliographic Details
Main Authors: Lin, Y. P. (Author), Husain, M. K. (Author), Alkhalil, F. M. (Author), Lambert, N. (Author), Perez-Barraza, J. (Author), Tsuchiya, Y. (Author), Ferguson, A. J. (Author), Chong, H. M. H. (Author), Mizuta, H. (Author)
Format: Article
Language:English
Published: 2012-08-28.
Subjects:
Online Access:Get fulltext
LEADER 01611 am a22002173u 4500
001 341482
042 |a dc 
100 1 0 |a Lin, Y. P.  |e author 
700 1 0 |a Husain, M. K.  |e author 
700 1 0 |a Alkhalil, F. M.  |e author 
700 1 0 |a Lambert, N.  |e author 
700 1 0 |a Perez-Barraza, J.  |e author 
700 1 0 |a Tsuchiya, Y.  |e author 
700 1 0 |a Ferguson, A. J.  |e author 
700 1 0 |a Chong, H. M. H.  |e author 
700 1 0 |a Mizuta, H.  |e author 
245 0 0 |a Design and fabrication of densely integrated silicon quantum dots using a VLSI compatible hydrogen silsesquioxane electron beam lithography process 
260 |c 2012-08-28. 
856 |z Get fulltext  |u https://eprints.soton.ac.uk/341482/1/1-s2.0-S0167931712002936-main.pdf 
520 |a Hydrogen silsesquioxane (HSQ) is a high resolution negative-tone electron beam resist allowing for direct transfer of nanostructures into silicon-on-insulator. Using this resist for electron beam lithography, we fabricate high density lithographically defined Silicon double quantum dot (QD) transistors. We show that our approach is compatible with very large scale integration, allowing for parallel fabrication of up to 144 scalable devices. HSQ process optimisation allowed for realisation of reproducible QD dimensions of 50 nm and tunnel junction down to 25 nm. We observed that 80% of the fabricated devices had dimensional variations of less than 5 nm. These are the smallest high density double QD transistors achieved to date. Single electron simulations combined with preliminary electrical characterisations justify the reliability of our device and process. 
655 7 |a Article