Successful Preclinical Development of Gene Therapy for Recombinase-Activating Gene-1-Deficient SCID

Recombinase-activating gene-1 (RAG1)-deficient severe combined immunodeficiency (SCID) patients lack B and T lymphocytes due to the inability to rearrange immunoglobulin and T cell receptor genes. Gene therapy is an alternative for those RAG1-SCID patients who lack a suitable bone marrow donor. We d...

Full description

Bibliographic Details
Main Authors: Laura Garcia-Perez, Marja van Eggermond, Lieke van Roon, Sandra A. Vloemans, Martijn Cordes, Axel Schambach, Michael Rothe, Dagmar Berghuis, Chantal Lagresle-Peyrou, Marina Cavazzana, Fang Zhang, Adrian J. Thrasher, Daniela Salvatori, Pauline Meij, Anna Villa, Jacques J.M. Van Dongen, Jaap-Jan Zwaginga, Mirjam van der Burg, H. Bobby Gaspar, Arjan Lankester, Frank J.T. Staal, Karin Pike-Overzet
Format: Article
Language:English
Published: Elsevier 2020-06-01
Series:Molecular Therapy: Methods & Clinical Development
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2329050120300462
id doaj-054d2c31c1974fd68ef81093f23e0c9c
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Laura Garcia-Perez
Marja van Eggermond
Lieke van Roon
Sandra A. Vloemans
Martijn Cordes
Axel Schambach
Michael Rothe
Dagmar Berghuis
Chantal Lagresle-Peyrou
Marina Cavazzana
Fang Zhang
Adrian J. Thrasher
Daniela Salvatori
Pauline Meij
Anna Villa
Jacques J.M. Van Dongen
Jaap-Jan Zwaginga
Mirjam van der Burg
H. Bobby Gaspar
Arjan Lankester
Frank J.T. Staal
Karin Pike-Overzet
spellingShingle Laura Garcia-Perez
Marja van Eggermond
Lieke van Roon
Sandra A. Vloemans
Martijn Cordes
Axel Schambach
Michael Rothe
Dagmar Berghuis
Chantal Lagresle-Peyrou
Marina Cavazzana
Fang Zhang
Adrian J. Thrasher
Daniela Salvatori
Pauline Meij
Anna Villa
Jacques J.M. Van Dongen
Jaap-Jan Zwaginga
Mirjam van der Burg
H. Bobby Gaspar
Arjan Lankester
Frank J.T. Staal
Karin Pike-Overzet
Successful Preclinical Development of Gene Therapy for Recombinase-Activating Gene-1-Deficient SCID
Molecular Therapy: Methods & Clinical Development
gene therapy
SCID
B lymphocytes
T lymphocytes
CD34+ cells
gene rearrangement
author_facet Laura Garcia-Perez
Marja van Eggermond
Lieke van Roon
Sandra A. Vloemans
Martijn Cordes
Axel Schambach
Michael Rothe
Dagmar Berghuis
Chantal Lagresle-Peyrou
Marina Cavazzana
Fang Zhang
Adrian J. Thrasher
Daniela Salvatori
Pauline Meij
Anna Villa
Jacques J.M. Van Dongen
Jaap-Jan Zwaginga
Mirjam van der Burg
H. Bobby Gaspar
Arjan Lankester
Frank J.T. Staal
Karin Pike-Overzet
author_sort Laura Garcia-Perez
title Successful Preclinical Development of Gene Therapy for Recombinase-Activating Gene-1-Deficient SCID
title_short Successful Preclinical Development of Gene Therapy for Recombinase-Activating Gene-1-Deficient SCID
title_full Successful Preclinical Development of Gene Therapy for Recombinase-Activating Gene-1-Deficient SCID
title_fullStr Successful Preclinical Development of Gene Therapy for Recombinase-Activating Gene-1-Deficient SCID
title_full_unstemmed Successful Preclinical Development of Gene Therapy for Recombinase-Activating Gene-1-Deficient SCID
title_sort successful preclinical development of gene therapy for recombinase-activating gene-1-deficient scid
publisher Elsevier
series Molecular Therapy: Methods & Clinical Development
issn 2329-0501
publishDate 2020-06-01
description Recombinase-activating gene-1 (RAG1)-deficient severe combined immunodeficiency (SCID) patients lack B and T lymphocytes due to the inability to rearrange immunoglobulin and T cell receptor genes. Gene therapy is an alternative for those RAG1-SCID patients who lack a suitable bone marrow donor. We designed lentiviral vectors with different internal promoters driving codon-optimized RAG1 to ensure optimal expression. We used Rag1−/− mice as a preclinical model for RAG1-SCID to assess the efficacy of the various vectors. We observed that B and T cell reconstitution directly correlated with RAG1 expression. Mice with low RAG1 expression showed poor immune reconstitution; however, higher expression resulted in phenotypic and functional lymphocyte reconstitution comparable to mice receiving wild-type stem cells. No signs of genotoxicity were found. Additionally, RAG1-SCID patient CD34+ cells transduced with our clinical RAG1 vector and transplanted into NSG mice led to improved human B and T cell development. Considering this efficacy outcome, together with favorable safety data, these results substantiate the need for a clinical trial for RAG1-SCID.
topic gene therapy
SCID
B lymphocytes
T lymphocytes
CD34+ cells
gene rearrangement
url http://www.sciencedirect.com/science/article/pii/S2329050120300462
work_keys_str_mv AT lauragarciaperez successfulpreclinicaldevelopmentofgenetherapyforrecombinaseactivatinggene1deficientscid
AT marjavaneggermond successfulpreclinicaldevelopmentofgenetherapyforrecombinaseactivatinggene1deficientscid
AT liekevanroon successfulpreclinicaldevelopmentofgenetherapyforrecombinaseactivatinggene1deficientscid
AT sandraavloemans successfulpreclinicaldevelopmentofgenetherapyforrecombinaseactivatinggene1deficientscid
AT martijncordes successfulpreclinicaldevelopmentofgenetherapyforrecombinaseactivatinggene1deficientscid
AT axelschambach successfulpreclinicaldevelopmentofgenetherapyforrecombinaseactivatinggene1deficientscid
AT michaelrothe successfulpreclinicaldevelopmentofgenetherapyforrecombinaseactivatinggene1deficientscid
AT dagmarberghuis successfulpreclinicaldevelopmentofgenetherapyforrecombinaseactivatinggene1deficientscid
AT chantallagreslepeyrou successfulpreclinicaldevelopmentofgenetherapyforrecombinaseactivatinggene1deficientscid
AT marinacavazzana successfulpreclinicaldevelopmentofgenetherapyforrecombinaseactivatinggene1deficientscid
AT fangzhang successfulpreclinicaldevelopmentofgenetherapyforrecombinaseactivatinggene1deficientscid
AT adrianjthrasher successfulpreclinicaldevelopmentofgenetherapyforrecombinaseactivatinggene1deficientscid
AT danielasalvatori successfulpreclinicaldevelopmentofgenetherapyforrecombinaseactivatinggene1deficientscid
AT paulinemeij successfulpreclinicaldevelopmentofgenetherapyforrecombinaseactivatinggene1deficientscid
AT annavilla successfulpreclinicaldevelopmentofgenetherapyforrecombinaseactivatinggene1deficientscid
AT jacquesjmvandongen successfulpreclinicaldevelopmentofgenetherapyforrecombinaseactivatinggene1deficientscid
AT jaapjanzwaginga successfulpreclinicaldevelopmentofgenetherapyforrecombinaseactivatinggene1deficientscid
AT mirjamvanderburg successfulpreclinicaldevelopmentofgenetherapyforrecombinaseactivatinggene1deficientscid
AT hbobbygaspar successfulpreclinicaldevelopmentofgenetherapyforrecombinaseactivatinggene1deficientscid
AT arjanlankester successfulpreclinicaldevelopmentofgenetherapyforrecombinaseactivatinggene1deficientscid
AT frankjtstaal successfulpreclinicaldevelopmentofgenetherapyforrecombinaseactivatinggene1deficientscid
AT karinpikeoverzet successfulpreclinicaldevelopmentofgenetherapyforrecombinaseactivatinggene1deficientscid
_version_ 1724594391823155200
spelling doaj-054d2c31c1974fd68ef81093f23e0c9c2020-11-25T03:26:01ZengElsevierMolecular Therapy: Methods & Clinical Development2329-05012020-06-0117666682Successful Preclinical Development of Gene Therapy for Recombinase-Activating Gene-1-Deficient SCIDLaura Garcia-Perez0Marja van Eggermond1Lieke van Roon2Sandra A. Vloemans3Martijn Cordes4Axel Schambach5Michael Rothe6Dagmar Berghuis7Chantal Lagresle-Peyrou8Marina Cavazzana9Fang Zhang10Adrian J. Thrasher11Daniela Salvatori12Pauline Meij13Anna Villa14Jacques J.M. Van Dongen15Jaap-Jan Zwaginga16Mirjam van der Burg17H. Bobby Gaspar18Arjan Lankester19Frank J.T. Staal20Karin Pike-Overzet21Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333ZA Leiden, the NetherlandsDepartment of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333ZA Leiden, the NetherlandsDepartment of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333ZA Leiden, the NetherlandsDepartment of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333ZA Leiden, the NetherlandsDepartment of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333ZA Leiden, the NetherlandsInstitute of Experimental Hematology, Hannover Medical School, 30625 Hannover, GermanyInstitute of Experimental Hematology, Hannover Medical School, 30625 Hannover, GermanyWillem-Alexander Children’s Hospital Department of Pediatrics, Leiden University Medical Center, 2333ZA Leiden, the NetherlandsBiotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM CIC 1416, Paris, France; Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Imagine Institute and Paris Descartes University-Sorbonne Paris Cité, 75015 Paris, France; Department of Biotherapy, Necker Children’s Hospital, Assistance Publique-Hôpitaux de Paris, 75015 Paris, FranceBiotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM CIC 1416, Paris, France; Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Imagine Institute and Paris Descartes University-Sorbonne Paris Cité, 75015 Paris, France; Department of Biotherapy, Necker Children’s Hospital, Assistance Publique-Hôpitaux de Paris, 75015 Paris, FranceMolecular and Cellular Immunology, Great Ormond Street Institute of Child Health, and Great Ormond Street Hospital NHS Trust, London WC1N 1EH, UKMolecular and Cellular Immunology, Great Ormond Street Institute of Child Health, and Great Ormond Street Hospital NHS Trust, London WC1N 1EH, UKCentral Laboratory Animal Facility, Pathology Unit, Leiden University Medical Center, 2333ZA Leiden, the Netherlands; Department of Pharmacy, Leiden University Medical Center, 2333ZA Leiden, the Netherlands; Pathogenesis and Treatment of Immune and Bone Diseases Unit, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Anatomy and Physiology Division, Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan1, 3584CL Utrecht, the NetherlandsDepartment of Pharmacy, Leiden University Medical Center, 2333ZA Leiden, the NetherlandsPathogenesis and Treatment of Immune and Bone Diseases Unit, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, 20132 Milan, ItalyDepartment of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333ZA Leiden, the NetherlandsDepartment of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333ZA Leiden, the NetherlandsWillem-Alexander Children’s Hospital Department of Pediatrics, Leiden University Medical Center, 2333ZA Leiden, the NetherlandsMolecular and Cellular Immunology, Great Ormond Street Institute of Child Health, and Great Ormond Street Hospital NHS Trust, London WC1N 1EH, UKWillem-Alexander Children’s Hospital Department of Pediatrics, Leiden University Medical Center, 2333ZA Leiden, the NetherlandsDepartment of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333ZA Leiden, the Netherlands; Corresponding author: Frank J.T. Staal, Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333ZA Leiden, the Netherlands.Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333ZA Leiden, the NetherlandsRecombinase-activating gene-1 (RAG1)-deficient severe combined immunodeficiency (SCID) patients lack B and T lymphocytes due to the inability to rearrange immunoglobulin and T cell receptor genes. Gene therapy is an alternative for those RAG1-SCID patients who lack a suitable bone marrow donor. We designed lentiviral vectors with different internal promoters driving codon-optimized RAG1 to ensure optimal expression. We used Rag1−/− mice as a preclinical model for RAG1-SCID to assess the efficacy of the various vectors. We observed that B and T cell reconstitution directly correlated with RAG1 expression. Mice with low RAG1 expression showed poor immune reconstitution; however, higher expression resulted in phenotypic and functional lymphocyte reconstitution comparable to mice receiving wild-type stem cells. No signs of genotoxicity were found. Additionally, RAG1-SCID patient CD34+ cells transduced with our clinical RAG1 vector and transplanted into NSG mice led to improved human B and T cell development. Considering this efficacy outcome, together with favorable safety data, these results substantiate the need for a clinical trial for RAG1-SCID.http://www.sciencedirect.com/science/article/pii/S2329050120300462gene therapySCIDB lymphocytesT lymphocytesCD34+ cellsgene rearrangement