Permeability of the HIV-1 capsid to metabolites modulates viral DNA synthesis.

Reverse transcription, an essential event in the HIV-1 life cycle, requires deoxynucleotide triphosphates (dNTPs) to fuel DNA synthesis, thus requiring penetration of dNTPs into the viral capsid. The central cavity of the capsid protein (CA) hexamer reveals itself as a plausible channel that allows...

Full description

Bibliographic Details
Main Authors: Chaoyi Xu, Douglas K Fischer, Sanela Rankovic, Wen Li, Robert A Dick, Brent Runge, Roman Zadorozhnyi, Jinwoo Ahn, Christopher Aiken, Tatyana Polenova, Alan N Engelman, Zandrea Ambrose, Itay Rousso, Juan R Perilla
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2020-12-01
Series:PLoS Biology
Online Access:https://doi.org/10.1371/journal.pbio.3001015
id doaj-1aa20b004af54e01aac2ef7867b6cf2f
record_format Article
spelling doaj-1aa20b004af54e01aac2ef7867b6cf2f2021-07-02T19:28:46ZengPublic Library of Science (PLoS)PLoS Biology1544-91731545-78852020-12-011812e300101510.1371/journal.pbio.3001015Permeability of the HIV-1 capsid to metabolites modulates viral DNA synthesis.Chaoyi XuDouglas K FischerSanela RankovicWen LiRobert A DickBrent RungeRoman ZadorozhnyiJinwoo AhnChristopher AikenTatyana PolenovaAlan N EngelmanZandrea AmbroseItay RoussoJuan R PerillaReverse transcription, an essential event in the HIV-1 life cycle, requires deoxynucleotide triphosphates (dNTPs) to fuel DNA synthesis, thus requiring penetration of dNTPs into the viral capsid. The central cavity of the capsid protein (CA) hexamer reveals itself as a plausible channel that allows the passage of dNTPs into assembled capsids. Nevertheless, the molecular mechanism of nucleotide import into the capsid remains unknown. Employing all-atom molecular dynamics (MD) simulations, we established that cooperative binding between nucleotides inside a CA hexamer cavity results in energetically favorable conditions for passive translocation of dNTPs into the HIV-1 capsid. Furthermore, binding of the host cell metabolite inositol hexakisphosphate (IP6) enhances dNTP import, while binding of synthesized molecules like benzenehexacarboxylic acid (BHC) inhibits it. The enhancing effect on reverse transcription by IP6 and the consequences of interactions between CA and nucleotides were corroborated using atomic force microscopy, transmission electron microscopy, and virological assays. Collectively, our results provide an atomistic description of the permeability of the HIV-1 capsid to small molecules and reveal a novel mechanism for the involvement of metabolites in HIV-1 capsid stabilization, nucleotide import, and reverse transcription.https://doi.org/10.1371/journal.pbio.3001015
collection DOAJ
language English
format Article
sources DOAJ
author Chaoyi Xu
Douglas K Fischer
Sanela Rankovic
Wen Li
Robert A Dick
Brent Runge
Roman Zadorozhnyi
Jinwoo Ahn
Christopher Aiken
Tatyana Polenova
Alan N Engelman
Zandrea Ambrose
Itay Rousso
Juan R Perilla
spellingShingle Chaoyi Xu
Douglas K Fischer
Sanela Rankovic
Wen Li
Robert A Dick
Brent Runge
Roman Zadorozhnyi
Jinwoo Ahn
Christopher Aiken
Tatyana Polenova
Alan N Engelman
Zandrea Ambrose
Itay Rousso
Juan R Perilla
Permeability of the HIV-1 capsid to metabolites modulates viral DNA synthesis.
PLoS Biology
author_facet Chaoyi Xu
Douglas K Fischer
Sanela Rankovic
Wen Li
Robert A Dick
Brent Runge
Roman Zadorozhnyi
Jinwoo Ahn
Christopher Aiken
Tatyana Polenova
Alan N Engelman
Zandrea Ambrose
Itay Rousso
Juan R Perilla
author_sort Chaoyi Xu
title Permeability of the HIV-1 capsid to metabolites modulates viral DNA synthesis.
title_short Permeability of the HIV-1 capsid to metabolites modulates viral DNA synthesis.
title_full Permeability of the HIV-1 capsid to metabolites modulates viral DNA synthesis.
title_fullStr Permeability of the HIV-1 capsid to metabolites modulates viral DNA synthesis.
title_full_unstemmed Permeability of the HIV-1 capsid to metabolites modulates viral DNA synthesis.
title_sort permeability of the hiv-1 capsid to metabolites modulates viral dna synthesis.
publisher Public Library of Science (PLoS)
series PLoS Biology
issn 1544-9173
1545-7885
publishDate 2020-12-01
description Reverse transcription, an essential event in the HIV-1 life cycle, requires deoxynucleotide triphosphates (dNTPs) to fuel DNA synthesis, thus requiring penetration of dNTPs into the viral capsid. The central cavity of the capsid protein (CA) hexamer reveals itself as a plausible channel that allows the passage of dNTPs into assembled capsids. Nevertheless, the molecular mechanism of nucleotide import into the capsid remains unknown. Employing all-atom molecular dynamics (MD) simulations, we established that cooperative binding between nucleotides inside a CA hexamer cavity results in energetically favorable conditions for passive translocation of dNTPs into the HIV-1 capsid. Furthermore, binding of the host cell metabolite inositol hexakisphosphate (IP6) enhances dNTP import, while binding of synthesized molecules like benzenehexacarboxylic acid (BHC) inhibits it. The enhancing effect on reverse transcription by IP6 and the consequences of interactions between CA and nucleotides were corroborated using atomic force microscopy, transmission electron microscopy, and virological assays. Collectively, our results provide an atomistic description of the permeability of the HIV-1 capsid to small molecules and reveal a novel mechanism for the involvement of metabolites in HIV-1 capsid stabilization, nucleotide import, and reverse transcription.
url https://doi.org/10.1371/journal.pbio.3001015
work_keys_str_mv AT chaoyixu permeabilityofthehiv1capsidtometabolitesmodulatesviraldnasynthesis
AT douglaskfischer permeabilityofthehiv1capsidtometabolitesmodulatesviraldnasynthesis
AT sanelarankovic permeabilityofthehiv1capsidtometabolitesmodulatesviraldnasynthesis
AT wenli permeabilityofthehiv1capsidtometabolitesmodulatesviraldnasynthesis
AT robertadick permeabilityofthehiv1capsidtometabolitesmodulatesviraldnasynthesis
AT brentrunge permeabilityofthehiv1capsidtometabolitesmodulatesviraldnasynthesis
AT romanzadorozhnyi permeabilityofthehiv1capsidtometabolitesmodulatesviraldnasynthesis
AT jinwooahn permeabilityofthehiv1capsidtometabolitesmodulatesviraldnasynthesis
AT christopheraiken permeabilityofthehiv1capsidtometabolitesmodulatesviraldnasynthesis
AT tatyanapolenova permeabilityofthehiv1capsidtometabolitesmodulatesviraldnasynthesis
AT alannengelman permeabilityofthehiv1capsidtometabolitesmodulatesviraldnasynthesis
AT zandreaambrose permeabilityofthehiv1capsidtometabolitesmodulatesviraldnasynthesis
AT itayrousso permeabilityofthehiv1capsidtometabolitesmodulatesviraldnasynthesis
AT juanrperilla permeabilityofthehiv1capsidtometabolitesmodulatesviraldnasynthesis
_version_ 1721323659995381760