Cooperative nutrient accumulation sustains growth of mammalian cells

The coordination of metabolic processes to allow increased nutrient uptake and utilization for macromolecular synthesis is central for cell growth. Although studies of bulk cell populations have revealed important metabolic and signaling requirements that impact cell growth on long time scales, whet...

Full description

Bibliographic Details
Main Authors: Son, Sungmin (Contributor), Stevens, Mark M. (Contributor), Chao, Hui Xiao (Contributor), Weng, Yaochung (Contributor), Wood, Kris (Author), Vander Heiden, Matthew G. (Contributor), Hosios, Aaron Marc (Contributor), Schweitzer, Lawrence David (Contributor), Thoreen, Carson C (Author), Sabatini, David (Author), Manalis, Scott R (Author)
Other Authors: Massachusetts Institute of Technology. Computational and Systems Biology Program (Contributor), Massachusetts Institute of Technology. Department of Biological Engineering (Contributor), Massachusetts Institute of Technology. Department of Biology (Contributor), Massachusetts Institute of Technology. Department of Mechanical Engineering (Contributor), Whitehead Institute for Biomedical Research (Contributor), Koch Institute for Integrative Cancer Research at MIT (Contributor), Thoreen, Carson (Contributor), Sabatini, David M. (Contributor), Manalis, Scott R. (Contributor)
Format: Article
Language:English
Published: Nature Publishing Group, 2016-01-20T00:50:57Z.
Subjects:
Online Access:Get fulltext
LEADER 03722 am a22005173u 4500
001 100935
042 |a dc 
100 1 0 |a Son, Sungmin  |e author 
100 1 0 |a Massachusetts Institute of Technology. Computational and Systems Biology Program  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Department of Biological Engineering  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Department of Biology  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Department of Mechanical Engineering  |e contributor 
100 1 0 |a Whitehead Institute for Biomedical Research  |e contributor 
100 1 0 |a Koch Institute for Integrative Cancer Research at MIT  |e contributor 
100 1 0 |a Son, Sungmin  |e contributor 
100 1 0 |a Stevens, Mark M.  |e contributor 
100 1 0 |a Chao, Hui Xiao  |e contributor 
100 1 0 |a Thoreen, Carson  |e contributor 
100 1 0 |a Hosios, Aaron Marc  |e contributor 
100 1 0 |a Schweitzer, Lawrence David  |e contributor 
100 1 0 |a Weng, Yaochung  |e contributor 
100 1 0 |a Sabatini, David M.  |e contributor 
100 1 0 |a Vander Heiden, Matthew G.  |e contributor 
100 1 0 |a Manalis, Scott R.  |e contributor 
700 1 0 |a Stevens, Mark M.  |e author 
700 1 0 |a Chao, Hui Xiao  |e author 
700 1 0 |a Weng, Yaochung  |e author 
700 1 0 |a Wood, Kris  |e author 
700 1 0 |a Vander Heiden, Matthew G.  |e author 
700 1 0 |a Hosios, Aaron Marc  |e author 
700 1 0 |a Schweitzer, Lawrence David  |e author 
700 1 0 |a Thoreen, Carson C  |e author 
700 1 0 |a Sabatini, David  |e author 
700 1 0 |a Manalis, Scott R  |e author 
245 0 0 |a Cooperative nutrient accumulation sustains growth of mammalian cells 
260 |b Nature Publishing Group,   |c 2016-01-20T00:50:57Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/100935 
520 |a The coordination of metabolic processes to allow increased nutrient uptake and utilization for macromolecular synthesis is central for cell growth. Although studies of bulk cell populations have revealed important metabolic and signaling requirements that impact cell growth on long time scales, whether the same regulation influences short-term cell growth remains an open question. Here we investigate cell growth by monitoring mass accumulation of mammalian cells while rapidly depleting particular nutrients. Within minutes following the depletion of glucose or glutamine, we observe a growth reduction that is larger than the mass accumulation rate of the nutrient. This indicates that if one particular nutrient is depleted, the cell rapidly adjusts the amount that other nutrients are accumulated, which is consistent with cooperative nutrient accumulation. Population measurements of nutrient sensing pathways involving mTOR, AKT, ERK, PKA, MST1, or AMPK, or pro-survival pathways involving autophagy suggest that they do not mediate this growth reduction. Furthermore, the protein synthesis rate does not change proportionally to the mass accumulation rate over these time scales, suggesting that intracellular metabolic pools buffer the growth response. Our findings demonstrate that cell growth can be regulated over much shorter time scales than previously appreciated. 
520 |a National Cancer Institute (U.S.) (Koch Institute Support (Core) Grant P30-CA14051) 
520 |a National Cancer Institute (U.S.). Physical Sciences Oncology Center (U54CA143874) 
520 |a National Institutes of Health (U.S.) (Contract R01GM085457) 
520 |a National Cancer Institute (U.S.) (Fellowship F31CA167872) 
520 |a National Institutes of Health (U.S.) (Interdepartmental Biotechnology Training Program 5T32GM008334) 
546 |a en_US 
655 7 |a Article 
773 |t Scientific Reports