Equilibrium and dynamic design principles for binding molecules engineered for reagentless biosensors

Reagentless biosensors rely on the interaction of a binding partner and its target to generate a change in fluorescent signal using an environment-sensitive fluorophore or Förster resonance energy transfer. Binding affinity can exert a significant influence on both the equilibrium and the dynamic r...

Full description

Bibliographic Details
Main Authors: De Picciotto, Seymour (Contributor), Imperiali, Barbara (Contributor), Griffith, Linda G (Contributor), Wittrup, Karl Dane (Contributor)
Other Authors: Massachusetts Institute of Technology. Department of Biological Engineering (Contributor), Massachusetts Institute of Technology. Department of Biology (Contributor), Massachusetts Institute of Technology. Department of Chemical Engineering (Contributor), Massachusetts Institute of Technology. Department of Chemistry (Contributor), Koch Institute for Integrative Cancer Research at MIT (Contributor)
Format: Article
Language:English
Published: Elsevier, 2016-11-17T22:35:45Z.
Subjects:
Online Access:Get fulltext
LEADER 02539 am a22003133u 4500
001 105345
042 |a dc 
100 1 0 |a De Picciotto, Seymour  |e author 
100 1 0 |a Massachusetts Institute of Technology. Department of Biological Engineering  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Department of Biology  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Department of Chemical Engineering  |e contributor 
100 1 0 |a Massachusetts Institute of Technology. Department of Chemistry  |e contributor 
100 1 0 |a Koch Institute for Integrative Cancer Research at MIT  |e contributor 
100 1 0 |a De Picciotto, Seymour  |e contributor 
100 1 0 |a Imperiali, Barbara  |e contributor 
100 1 0 |a Griffith, Linda G  |e contributor 
100 1 0 |a Wittrup, Karl Dane  |e contributor 
700 1 0 |a Imperiali, Barbara  |e author 
700 1 0 |a Griffith, Linda G  |e author 
700 1 0 |a Wittrup, Karl Dane  |e author 
245 0 0 |a Equilibrium and dynamic design principles for binding molecules engineered for reagentless biosensors 
260 |b Elsevier,   |c 2016-11-17T22:35:45Z. 
856 |z Get fulltext  |u http://hdl.handle.net/1721.1/105345 
520 |a Reagentless biosensors rely on the interaction of a binding partner and its target to generate a change in fluorescent signal using an environment-sensitive fluorophore or Förster resonance energy transfer. Binding affinity can exert a significant influence on both the equilibrium and the dynamic response characteristics of such a biosensor. We here develop a kinetic model for the dynamic performance of a reagentless biosensor. Using a sinusoidal signal for ligand concentration, our findings suggest that it is optimal to use a binding moiety whose equilibrium dissociation constant matches that of the average predicted input signal, while maximizing both the association rate constant and the dissociation rate constant at the necessary ratio to create the desired equilibrium constant. Although practical limitations constrain the attainment of these objectives, the derivation of these design principles provides guidance for improved reagentless biosensor performance and metrics for quality standards in the development of biosensors. These concepts are broadly relevant to reagentless biosensor modalities. 
520 |a National Cancer Institute (U.S.). Integrative Cancer Biology Program (Grant 1 U54 CA112967) 
520 |a National Institutes of Health (U.S.) (R01 EB 010246) 
546 |a en_US 
655 7 |a Article 
773 |t Analytical Biochemistry