Partial least squares structural equation modeling-based discrete choice modeling: an illustration in modeling retailer choice

Commonly used discrete choice model analyses (e.g., probit, logit and multinomial logit models) draw on the estimation of importance weights that apply to different attribute levels. But directly estimating the importance weights of the attribute as a whole, rather than of distinct attribute levels,...

Full description

Bibliographic Details
Main Authors: Fischer, A. (Author), Gudergan, S.P (Author), Hair, J.F (Author), Menictas, C. (Author), Nitzl, C. (Author), Ringle, C.M (Author)
Format: Article
Language:English
Published: Springer 2019
Subjects:
Online Access:View Fulltext in Publisher
LEADER 01875nam a2200253Ia 4500
001 10.1007-s40685-018-0072-4
008 220511s2019 CNT 000 0 und d
020 |a 21983402 (ISSN) 
245 1 0 |a Partial least squares structural equation modeling-based discrete choice modeling: an illustration in modeling retailer choice 
260 0 |b Springer  |c 2019 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1007/s40685-018-0072-4 
520 3 |a Commonly used discrete choice model analyses (e.g., probit, logit and multinomial logit models) draw on the estimation of importance weights that apply to different attribute levels. But directly estimating the importance weights of the attribute as a whole, rather than of distinct attribute levels, is challenging. This article substantiates the usefulness of partial least squares structural equation modeling (PLS-SEM) for the analysis of stated preference data generated through choice experiments in discrete choice modeling. This ability of PLS-SEM to directly estimate the importance weights for attributes as a whole, rather than for the attribute’s levels, and to compute determinant respondent-specific latent variable scores applicable to attributes, can more effectively model and distinguish between rational (i.e., optimizing) decisions and pragmatic (i.e., heuristic) ones, when parameter estimations for attributes as a whole are crucial to understanding choice decisions. © 2018, The Author(s). 
650 0 4 |a Discrete choice modeling 
650 0 4 |a Experiments 
650 0 4 |a Partial least squares 
650 0 4 |a Path modeling 
650 0 4 |a Structural equation modeling 
700 1 |a Fischer, A.  |e author 
700 1 |a Gudergan, S.P.  |e author 
700 1 |a Hair, J.F.  |e author 
700 1 |a Menictas, C.  |e author 
700 1 |a Nitzl, C.  |e author 
700 1 |a Ringle, C.M.  |e author 
773 |t Business Research